Reversible data hiding in encrypted images has attracted considerable attention from the communities of privacy security and protection. The success of the previous methods in this area has shown that a superior performance can be achieved by exploiting the redundancy within the image. Specifically, because the pixels in the local structures (like patches or regions) have a strong similarity, they can be heavily compressed, thus resulting in a large hiding room. In this paper, to better explore the correlation between neighbor pixels, we propose to consider the patch-level sparse representation when hiding the secret data. The widely used sparse coding technique has demonstrated that a patch can be linearly represented by some atoms in an over-complete dictionary. As the sparse coding is an approximation solution, the leading residual errors are encoded and self-embedded within the cover image. Furthermore, the learned dictionary is also embedded into the encrypted image. Thanks to the powerful representation of sparse coding, a large vacated room can be achieved, and thus the data hider can embed more secret messages in the encrypted image. Extensive experiments demonstrate that the proposed method significantly outperforms the state-of-the-art methods in terms of the embedding rate and the image quality.
A Bayesian dynamic model based on multitask learning (MTL) is developed for radar automatic target recognition (RATR) using high-resolution range profile (HRRP). The aspect-dependent HRRP sequence is modeled using a truncated stick-breaking hidden Markov model (TSB-HMM) with time-evolving transition probabilities, in which the spatial structure across range cells is described by the hidden Markov structure and the temporal dependence between HRRP samples is described by the time evolution of the transition probabilities. This framework imposes the belief that temporally proximate HRRPs are more likely to be drawn from similar HMMs, while also allowing for possible distant repetition or "innovation". In addition, as formulated the stick-breaking prior and MTL mechanism are employed to infer the number of hidden states in an HMM and learn the target-dependent states collectively for all targets. The form of the proposed hierarchical model allows efficient variational Bayesian (VB) inference, of interest for large-scale problems. To validate the formulation, example results are presented for an illustrative synthesized dataset and our main application-RATR, for which we consider the measured HRRP data. For the latter, we also make comparisons to the model with the independent state-transition statistics and some other existing statistical models for radar HRRP data.
Index Terms-Hidden Markov model (HMM), hierarchicalBayesian modeling, high-resolution range profile (HRRP), multitask learning (MTL), radar automatic target recognition (RATR), variational Bayes (VB).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.