Successful seed germination and seedling growth in orchids require an association with mycorrhizal fungi. An endophytic Fusarium fungal strain YZU 172038 exhibiting plant growth-promoting (PGP) ability was isolated from the roots of Spiranthes sinensis (Orchidaceae). The harboring endohyphal bacteria were detected in the hypha by SYTO-9 fluorescent nucleic acid staining, fluorescence in situ hybridization (FISH), and PCR amplification of the 16S rDNA gene’s region. Consequently, one endohyphal bacterium (EHB) – a strain YZSR384 was isolated and identified as Bacillus subtilis based on morphology, phylogenetic analysis, and genomic information. The results indicated that the strain YZSR384 could significantly promote the growth of rice roots and shoots similar to its host fungus. Its indole acetic acid (IAA) production reached a maximum of 23.361 μg/ml on the sixth day after inoculation. The genome annotation revealed several genes involved in PGP traits, including the clusters of genes encoding the IAA (trpABCDEFS), the siderophores (entABCE), and the dissolving phosphate (pstABCS and phoABDHPR). As an EHB, B. subtilis was first isolated from endophytic Fusarium acuminatum from S. sinensis.
Raspberry (Rubus rosaefolius Smith), also called march bubble or milk bubble, is widely distributed and economically important in China. Raspberries are rich in nutrients such as essential amino acids, vitamin C, dietary fiber, superoxide dismutase (SOD) and minerals (Yang et al. 2019). In May 2019, a leaf spot disease was observed on raspberry in Enshi (N29°07'10', E108°23'12'), Hubei province of China. The symptoms were small dark-brown spots (Fig.1) on over 90% of observed plants. To isolate the pathogen, leaf sections (5 mm × 3 mm) from the border of the symptomatic tissue were cut and sterilized with 75% ethanol for 30 s, followed by 2% sodium hypochlorite (NaClO) for 2 min, and then rinsed three times with sterile water. Leaf sections were placed on potato dextrose agar (PDA) medium amended with 25 μg / ml ampicillin and incubated at 25 °C in the dark for 3 days. Isolated colonies were sub-cultured on PDA by hyphal tip transfer. Eight fungal isolates with similar morphology, abundant white aerial hyphae, were collected. Colonies on PDA grew up to 80 mm in diameter by 7 days at 25 °C. The center of each colony became black (Fig.2). Conidia were unicellular, oval and hyaline. Conidia ranged in size from 14.5 to 19.75 µm × 5.80 to 10.20 µm (n=50) in 20% (v/v) V8 vegetable juice medium. No appressoria were observed. Morphological characteristics are similar to those of Colletotrichum spp. (Moriwaki et al. 2003). Total genomic DNA of a representative isolate S1 was extracted with a CTAB method (Stenglein et al. 2006). Internal transcribed spacer (ITS) region of rDNA, actin (ACT) , beta-tubulin (TUB2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified and sequenced with the primer pairs of ITS4 / ITS5, ACT512F / ACT783R, Bt-2a / Bt-2b and GDF1 / GDR1, respectively (Weir et al. 2012). BLAST results showed that ITS, ACT, TUB2 and GAPDH gene sequences (GenBank accession nos. MN498030, MT780498, MT780496 and MT780497, respectively) were 99% identical to those of Colletotrichum boninense Moriwaki, Sato & Tsukiboshi (GenBank accession nos. MF076598, JX009583, JQ005588 and JX009905, respectively). Concatenated sequences of the four genes were used to conduct a phylogenetic analysis using neighbor-joining method in MEGA7 (Toussaint et al. 2016). The isolate S1 clustered with above C. boninense strains retrieved from NCBI database. Therefore, the present isolate S1 was identified as C. boninense. Pathogenicity tests were performed using one-month-old raspberry plants, 24 controls and 30 inoculated. The plants were sprayed with conidial suspension ( 106 conidia / mL) cultured on 20% (v/v) V8 vegetable juice medium for 15 days. The control plants were sprayed with sterile distilled water. All plants were covered with plastic bags 24h to maintain the relative humidity in the field. Fifteen days after inoculation, typical symptoms of brown spots were observed on leaves similar to the disease on field plants, while the leaves from the control group remained asymptomatic. C. boninense was reisolated and identified from inoculated symptomatic leaves. Anthracnose on raspberry caused by Colletotrichum gloeosporioides (Dai et al. 2013) and C. fioriniae (Schoeneberg et al. 2020) has previously been reported. However, to the best of our knowledge, this is the first report of Colletotrichum boninense causing leaf spot on Raspberry in China. If more reports of this pathogen are found on raspberries, then it may be necessary to develop effective management strategies for controlling this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.