Graphene-cellulose-polyethyleneimine aerogels (GA-MCC-PEI) were prepared using a simple, environmentally friendly method to remove anionic and cationic dyes in water. Graphene-cellulose hydrogels were prepared using a hydrothermal method and then immersed in a polyethyleneimine aqueous solution for 48 h to obtain graphene-cellulose-polyethyleneimine hydrogels, which were then freeze-dried. The light and porous composite aerogels had a good compression resistance, and the maximum allowable pressure of the graphene-cellulose-polyethyleneimine aerogel with a cellulose content of 43% was 21.76 kPa, which was 827 times its weight. Adsorption of the anionic dye amaranth and the cationic dye methylene blue by the graphene-cellulose-polyethyleneimine aerogel was satisfactorily modeled using the Langmuir isothermal equation, indicating monolayer adsorption. When the cellulose content was 39%, the equilibrium adsorption capacities of the composite aerogel for amaranth and methylene blue were 369.37 mg/g and 237.33 mg/g, respectively. This graphene-cellulose-polyethyleneimine aerogel can be used to remove dye pollutants in water to maintain ecological balance, thus broadening the application space of aerogel materials, that is, as adsorbents in different environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.