Integrated spectrometers provide the possibility of compact, low-cost portable spectroscopy sensing, which is the critical component of the lab-on-a-chip system. However, using existing on-chip designs is challenging to realize a high-resolution miniature spectrometer over a broad wavelength range. Here, we demonstrate an on-chip time-sampling narrowband filter array spectrometer that enables simultaneous acquisition of high-resolution spectra via optical Fabry−Peŕot cavities and a large spectral range with tunable free spectral range free filters. Two spectrometers consisting of five and seven filter cells with a compact footprint are fabricated and experimentally characterized, demonstrating a resolution of <0.43 and <0.51 nm and a spectral range of 73.2 and 102.7 nm, respectively. Unknown broad bandwidth input signal spectra can be successfully retrieved. Integrating more filter cells with thermal isolation trenches can dramatically boost the operational spectral range. Such spectrometers may open up new pathways toward spectral analytical applications.
Reconfigurable silicon photonic devices are widely used in numerous emerging fields such as optical interconnects, photonic neural networks, quantum computing, and microwave photonics. Currently, phase change materials (PCMs) have been extensively investigated as promising candidates for building switching units due to their strong refractive index modulation. Here, nonvolatile multilevel switching of silicon photonic devices with Ge2Sb2Te5 (GST) is demonstrated with In2O3 transparent microheaters that are compatible with diverse material platforms. With GST integrated on the silicon photonic waveguides and Mach‐Zehnder interferometers (MZIs), repeatable and reversible multilevel modulation of GST is achieved by electro‐thermally induced phase transitions. Particularly, the segmented switching unit of In2O3 and GST is proposed and demonstrated to be capable of producing about one order of magnitude larger temperature gradient than that of the nonsegmented unit, resulting in up to 64 distinguishable switching levels of 6‐bit precision, and fine‐tuning of the switching voltage pulses is promising to push the precision even further, to 7‐bit, or 128 distinguishable switching levels. The capability of precise multilevel phase‐change modulation is crucial to further facilitate the development of nonvolatile reconfigurable switches and variable attenuation devices as building blocks in large‐scale programmable optoelectronic systems.
Hybrid integration of van der Waals materials on a photonic platform enables diverse exploration of novel active functions and significant improvement in device performance for next-generation integrated photonic circuits, but developing waveguide-integrated photodetectors based on conventionally investigated transition metal dichalcogenide materials at the full optical telecommunication bands and mid-infrared range is still a challenge. Here, we integrate PdSe 2 with silicon waveguide for onchip photodetection with a high responsivity from 1260 to 1565 nm, a low noise-equivalent power of 4.0 pW•Hz −0.5 , a 3-dB bandwidth of 1.5 GHz, and a measured data rate of 2.5 Gbit•s −1 . The achieved PdSe 2 photodetectors provide new insights to explore the integration of novel van der Waals materials with integrated photonic platforms and exhibit great potential for diverse applications over a broad infrared range of wavelengths, such as on-chip sensing and spectroscopy.
The mid-infrared (MIR, 2–20 μm) waveband is of great interest for integrated photonics in many applications such as on-chip spectroscopic chemical sensing, and optical communication. Thermo-optic switches are essential to large-scale integrated photonic circuits at MIR wavebands. However, current technologies require a thick cladding layer, high driving voltages or may introduce high losses in MIR wavelengths, limiting the performance. This paper has demonstrated thermo-optic (TO) switches operating at 2 μm by integrating graphene onto silicon-on-insulator (SOI) structures. The remarkable thermal and optical properties of graphene make it an excellent heater material platform. The lower loss of graphene at MIR wavelength can reduce the required cladding thickness for the thermo-optics phase shifter from micrometers to tens of nanometers, resulting in a lower driving voltage and power consumption. The modulation efficiency of the microring resonator (MRR) switch was 0.11 nm/mW. The power consumption for 8-dB extinction ratio was 5.18 mW (0.8 V modulation voltage), and the rise/fall time was 3.72/3.96 μs. Furthermore, we demonstrated a 2 × 2 Mach-Zehnder interferometer (MZI) TO switch with a high extinction ratio of more than 27 dB and a switching rise/fall time of 4.92/4.97 μs. A comprehensive analysis of the device performance affected by the device structure and the graphene Fermi level was also performed. The theoretical figure of merit (2.644 mW−1μs−1) of graphene heaters is three orders of magnitude higher than that of metal heaters. Such results indicate graphene is an exceptional nanomaterial for future MIR optical interconnects.
In this article, the chalcogenide slot waveguide is theoretically studied, and the highest power confinement factors of the slot region and the cladding region are obtained to be 36.3% and 56.7%, respectively. A high-sensitivity chalcogenide slot microring resonator sensor is designed and fabricated by electron-beam lithography and dry etching. The structure increases the sensitivity of the sensor compared with the conventional evanescent field waveguide sensor. The cavity has achieved a quality factor of 1 × 104 by fitting the resonant peaks with the Lorentzian profile, one of the highest quality factors reported for chalcogenide slot microring resonators. The sensor sensitivity is measured to be 471 nm/RIU, which leads to an intrinsic limit of detection of 3.3 × 10−4 RIU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.