application, large number of missing gaps was shown on the west of the TP, where it is considered that the retrieval algorithms are largely affected by the permafrost covered in this region, leaving the ESA soil moisture product for further improvement. In application, the ESA soil moisture product was used to study the response of surface soil moisture to climate change on the TP. With the rapid warming and the overall wetting of the TP, soil moisture increases on the central of the TP with the increase of precipitation, and decreases in the southeast TP with the precipitation deduction. However, it decreases in the west TP, where it was probably influenced by both the insignificant precipitation changes and the significant increase of evaporation.Keywords Hydrological consistency · ESA soil moisture product · Soil moisture · Precipitation · Trends · Tibetan Plateau Abstract As the first purely multi-decadal satellitebased soil moisture product that spans over 35 years (from November 1978 to December 2013) on a daily basis designed for climate application, the applicability of the European Space Agency (ESA) soil moisture product, including the hydrological consistency between the product and the observed precipitation and the product continuity on the Tibetan Plateau (TP) were investigated. The results show that there is significant degree between the ESA soil moisture product and the observed precipitation. The positive anomaly of the ESA soil moisture product can reflect the occurrences of precipitation, but the precipitation may not definitely lead to soil moisture anomaly, which largely depends on the precipitation amounts. For climate
In this paper, we present a new method to study global atmospheric processes and their changes during the last decade. A cosmogenic radionuclide measured at ground-level, beryllium-7, is utilized as a proxy to study atmospheric dynamics. Beryllium-7 has two advantages: First, this radionuclide, primarily created in the lower stratosphere, attaches to aerosols that are transported downwards to the troposphere and travel around the globe with the general atmospheric circulation. By monitoring these particles, we can provide a global, simple, and sustainable way to track processes such as multi-annual variation of the troposphere, tropopause heightening, position and speed of atmospheric interface zones, as well as the poleward movement and stalling patterns of jet streams. Second, beryllium-7 is a product of cosmic rays which are themselves directly linked to solar activity and the earth magnetic field. This study shows whether beryllium-7 observed concentration changes are correlated with such natural processes or independent of them. Our work confirms that major changes in the atmospheric circulation are currently ongoing, even though timeseries are too short to make climatological assessments. We provide solid evidence of significant and progressive changes of the global atmospheric circulation as well as modifications of tropopause heights over the past decade. As the last decade happened to be the warmest on record, this analysis also indicates that the observed changes are, at least to some extent, attributable to global warming.
The width of the tropical belt has been analyzed with a variety of metrics, often based on zonal-mean data from reanalyses. However, constraining the global and regional tropical width requires both a global spatial-resolving observational dataset and an appropriate metric to take advantage of such data. The tropical tropopause break is arguably such a metric. This study aims to evaluate the performance of different reanalyses and metrics with a focus on depicting regional tropical belt width. We choose four distinct tropopause-break metrics derived from global positioning system radio occultation (GPS-RO) satellite data and four modern reanalyses (ERA-Interim, MERRA-2, JRA-55, and CFSR). We show that reanalyses generally reproduce the regional tropical tropopause break to within 10° of that in GPS-RO data—but that the tropical width is somewhat sensitive (within 4°) to how data are averaged zonally, moderately sensitive (within 10°) to the dataset resolution, and more sensitive (20° over the Northern Hemisphere Atlantic Ocean during June–August) to the choice of metric. Reanalyses capture the poleward displacement of the tropical tropopause break over land and equatorward displacement over ocean during summertime, and the reverse during the wintertime. Reanalysis-based tropopause breaks are also generally well correlated with those from GPS-RO, although CFSR reproduces 14-yr trends much more closely than others (including ERA-Interim). However, it is hard to say which dataset is the best match of GPS-RO. We further find that the tropical tropopause break is representative of the subtropical jet latitude and the Northern Hemisphere edge of the Hadley circulation in terms of year-to-year variations.
<p>Recent studies demonstrated how accurate beryllium 7 can be used as proxy to predict seasonal weather, in particular Indian monsoons, climate change patterns such as tropopause height changes, tropopause breathing and Jet Stream stalling.</p><p>Beryllium 7 studies also prove that climate change phenomena are not driven by solar flux or earth magnetic field but are only partially influenced by them.</p><p>In this work we will compare recent tropopause height data with Beryllium 7 in order to build a comparative scale between the 2 parameters, including a focus on QBO (quasi-biennual oscillation) to quantify the effect of QBO on the analysed beryllium 7 data.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.