In clinical practice, therapeutic and diagnostic endoluminal procedures of the human body often use a scope, catheter, or passive pill-shaped camera. Unfortunately, such procedures in the circulatory system and gastrointestinal tract are often uncomfortable, invasive, and require the patient to be sedated. With current methods, regions of the body are often inaccessible to the clinician. Herein, a magnetically-actuated soft endoluminal inchworm robot that may extend clinicians' ability to reach further into the human body and practice new procedures is described, modeled, and analyzed. A detailed locomotion model is proposed that takes into account the elastic deformation of the robot and its interactions with the environment. The model is validated with in vitro and ex vivo physical experiments and is shown to capture the robot's gait characteristics through a lumen. Utilizing dimensional analysis, the effects of the mechanical properties and design variables on the robot's motion are investigated further to advance the understanding of this endoluminal robot concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.