Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. While MDSC regulation is widely variable even within patients harboring the same type of malignancy, the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumor genomics and syngeneic mammary tumor models, we demonstrate that mTOR signaling in cancer cells dictates a mammary tumor’s ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (e.g., FGFR) impairs tumor progression, which is partially rescued by restoring MDSCs or G-CSF. Tumor-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumor cells, forming a feed-forward loop. Analyses of primary breast cancers and patient-derived xenografts (PDXs) corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signaling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend upon a distinct immune microenvironment.
Beyond intracellular killing, a novel neutrophil-based antimicrobial mechanism has been recently discovered: entrapment and killing by neutrophil extracellular traps (NETs). NETs consist of extruded nuclear DNA webs decorated with granule proteins. Although NET formation is an important innate immune mechanism, uncontrolled NET release damages host tissues and has been linked to several diseases including cystic fibrosis (CF). The major CF airway pathogen Pseudomonas aeruginosa establishes chronic infection. Pseudomonas imbedded within biofilms is protected against the immune system, but maintains chronic inflammation that worsens disease symptoms. Aberrant NET release from recruited neutrophils was found in CF, but the underlying mechanisms remain unclear. One of the most important Pseudomonas virulence factors is pyocyanin, a redox-active pigment that has been associated with diminished lung function in CF. Here we show that pyocyanin promotes NET formation in a time- and dose-dependent manner. Most CF Pseudomonas clinical isolates tested produce pyocyanin in vitro. Pyocyanin-derived reactive oxygen species are required for its NET release. Inhibitor experiments demonstrated involvement of Jun N-terminal Kinase (JNK) and phosphatidylinositol 3-Kinase (PI3K) in pyocyanin-induced NET formation. Pyocyanin-induced NETs also require the NADPH oxidase because NET release in chronic granulomatous disease neutrophils was greatly reduced. Comparison of neutrophils from gp91phox- and p47phox-deficient patients revealed that pyocyanin-triggered NET formation is proportional to their residual superoxide production. Our studies identify pyocyanin as the first secreted bacterial toxin that enhances NET formation. The involvement of NADPH oxidase in pyocyanin-induced NET formation represents a novel mechanism of pyocyanin toxicity.
Cystic fibrosis (CF) airways are characterized by bacterial infections, excess mucus production and robust neutrophil recruitment. The main CF airway pathogen is Pseudomonas aeruginosa. Neutrophils are not capable of clearing the infection. Neutrophil primary granule components, myeloperoxidase (MPO) and human neutrophil elastase (HNE), are inflammatory markers in CF airways, and their elevated levels are associated with poor lung function. Identifying the mechanism of MPO and HNE release from neutrophils is of high clinical relevance for CF. Here we show that human neutrophils release large amounts of neutrophil extracellular traps (NETs) in the presence of Pseudomonas aeruginosa. Bacteria are entangled in NETs and co-localize with extracellular DNA. MPO, HNE and citrullinated histone H4 are all associated with DNA in Pseudomonas-triggered NETs. Both, laboratory standard strains and CF isolates of Pseudomonas aeruginosa induce DNA, MPO and HNE release from human neutrophils. The increase in peroxidase activity of neutrophil supernatants after Pseudomonas exposure indicates that enzymatically active MPO is released. Pseudomonas aeruginosa induces a robust respiratory burst in neutrophils that is required for extracellular DNA release. Inhibition of the cytoskeleton prevents Pseudomonas-initiated superoxide production and DNA release. NADPH oxidase inhibition suppresses Pseudomonas-induced release of active MPO and HNE. Blocking MEK/ERK signaling results in only minimal inhibition of DNA release induced by Pseudomonas. Our data describe in vitro details of DNA, MPO and HNE release from neutrophils activated by Pseudomonas aeruginosa. We propose that Pseudomonas-induced NET formation is an important mechanism contributing to inflammatory conditions characteristic of CF airways.
Pseudogout is an autoinflammatory condition triggered by calcium pyrophosphate dehydrate (CPPD) crystal deposition in the joints. The innate immune system is irritated by and responds to the presence of the crystals with an inflammatory response. The synovial fluid contains activated inflammatory macrophages and neutrophil granulocytes. Several details of crystal-induced macrophage activation were recently uncovered, but very little is known about interactions of CPPD crystals with neutrophils. In this study, we show that human neutrophils engulf CPPD crystals and form large amounts of neutrophil extracellular traps (NETs) in vitro. Released extracellular DNA binds myeloperoxidase and citrullinated histone H4. CPPD crystal–stimulated neutrophils and their nuclear DNA undergo morphological changes characteristic for NET formation. The ERK/MEK signaling pathway, heat shock protein 90, PI3K, and an intact cytoskeleton are required for CPPD-induced NET formation. Blocking crystal-activated respiratory burst has, however, no effect on NETs. Human neutrophils release IL-1β and IL-8 in response to CPPD crystals, and blocking CXCR2, the main IL-8R, diminishes NET formation. Proinflammatory cytokines, TNF-α, GM-CSF, and IL-1β, increase NET release by the crystals. Enhanced bacterial killing by CPPD-induced NETs demonstrates their ability to cause cellular damage. Our work documents and provides details about extracellular trap release in human neutrophils activated by CPPD microcrystals. We suggest that crystal-triggered NET formation can be a novel contributor to inflammatory conditions observed in CPPD crystal–driven synovitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.