We have studied sublethal injury in Salmonella enterica serovar Typhimurium caused by mild heat and by different emerging nonthermal food preservation treatments, i.e., high-pressure homogenization, high hydrostatic pressure, pulsed white light, and pulsed electric field. Sublethal injury was determined by plating on different selective media, i.e., tryptic soy agar (TSA) plus 3% NaCl, TSA adjusted to pH 5.5, and violet red bile glucose agar. For each inactivation technique, at least five treatments using different doses were applied in order to cover an inactivation range of 0 to 5 log units. For all of the treatments performed with a technique, the logarithm of the viability reductions measured on each of the selective plating media was plotted against the logarithm of the viability reduction on TSA as a nonselective medium, and these points were fined by a straight line. Sublethal injury between different techniques was then compared by the slope and the y intercept of these regression lines. The highest levels of sublethal injury were observed for the heat and high hydrostatic pressure treatments. Sublethal injury after those treatments was observed on all selective plating media. For the heat treatment, but not for the high-pressure treatment, sublethal injury occurred at low doses, which were not yet lethal. The other nonthermal techniques resulted in sublethal injury on only some of the selective plating media, and the levels of injury were much lower. The different manifestations of sublethal injury were attributed to different inactivation mechanisms by each of the techniques, and a mechanistic model is proposed to explain these differences.
A biofilm is any group of microorganisms in which cells stick to each other and adhere to a surface by excreting a matrix of extracellular polymeric substances (EPS). The chemoautotrophic nitrifying bacteria hardly form biofilms due to their extremely low growth rate; however, biofilm formation of nitrifying bacteria trends to attach in carrier by extracellular polysaccharides that facilitate mutual adhesion, the forming biofilm is also beneficial in nitrogen removal in biological filter systems, especially in aquaculture water treatment systems. The microbial activity within bio-carrier is a key factor in the performance of biofilm reactor. Selection the nitrifier bacteria that biofilm formation and immobilization on the carrier for application in ammonium polluted water treatment technologies, especially in aquaculture is our research objective. Therefore, in this study, ten and six strains of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) respectively were isolated from six different aquaculture water samples collected from Quang Ninh and Soc Trang. Basing on their high nitrification activity and biofilm forming capacity, six bacterial strains have been selected to take photo by scanning electron microscope (SEM) and carry out in 2 – liter tanks with and without carriers. As the results, the system with carriers (30% of total volume) increased nitrogen compounds elimination efficiency from 1.2 times to 2 times in comparison with the system without carrier. Two representatives of ammonia oxidizing bacterial group (B1.1; G2-1.2) were classification based on characteristics and they were classified as Nitrosomonas sp. and Nitrosococcus sp. Màng sinh học được hình thành từ vi sinh vật nhờ các tế bào tiết ra các chất cao phân tử ngoại bào (EPS) và dính vào nhau đồng thời được gắn lên một bề mặt vật thể lỏng hoặc rắn. Vi khuẩn nitrate hóa tự dưỡng có thể tạo ra màng sinh học nhưng khá khó khăn do tỷ lệ sinh trưởng rất chậm của chúng. Tuy nhiên vi khuẩn nitrate hóa tạo màng sinh học thường có xu thế bám lên giá thể nhờ sự gắn kết của các polisaccarit ngoại bào. Sự hình thành màng sinh học cũng là lợi thế để loại bỏ các hợp chất nitơ trong các hệ thống lọc sinh học, đặc biệt là trong các hệ thống xử lý nước nuôi trồng thủy sản. Hoạt tính vi sinh vật cùng với giá thể sinh học là một yếu tố quan trọng để thực hiện trong các bể phản ứng màng sinh học. Trong nghiên cứu này, mục tiêu của chúng tôi là lựa chọn được các vi khuẩn nitrate hóa có khả năng tạo màng sinh học và cố định chúng lên giá thể để ứng dụng trong các công nghệ xử lý nước bị ô nhiễm ammonia đặc biệt là trong nuôi trồng thủy sản. Kết quả cho thấy, từ sáu mẫu nước nuôi trồng thủy sản khác nhau từ Quảng Ninh và Sóc Trăng, 10 chủng vi khuẩn oxy hóa ammonia (AOB) và 6 chủng vi khuẩn oxy hóa nitrite (NOB) đã được phân lập. Dựa vào hoạt tính nitrate hóa và khả năng tạo màng sinh học của các chủng vi khuẩn phân lập được 6 chủng điển hình đã được lựa chọn để chụp ảnh kính hiển vi điện tử quét và được ứng dụng trong hai bể sinh học với dung tích 2 lít có chứa và không chứa chất mang (giá thể). Sau 7 ngày, hệ thống sinh học chứa giá thể (chiếm 30% thể tích) có hiệu suất loại bỏ các hợp chất nitơ tăng hơn từ 1,2 đến 2 lần so với bể sinh học không chứa chất mang. Hai đại diện của nhóm vi khuẩn oxy hóa ammonia (B-1.1 và G2-1.2) đã được phân loại sơ bộ dựa vào một số đặc điểm sinh học và chúng đã được xác định thuộc chi Nitrosomonas và chi Nitrosococcus.
Soybean meal (SBM) is residua product after oil extraction, the SBM with 48% protein is used for poultry, cattle. The SBM contains significant amount of anti-nutritional factors. Degradation of most antigenic proteins and protease inhibitors in SBM fermented by fungal, yeast and bacterial strains. Soybean fermented products are used as feed for livestock or aquaculture. Recently, biofilm forming microorganisms were broadly applied for fermentation process using substrates such as rice bran, corn, soybean meal ... to produce probiotics. In this study, we isolated and selected beneficial microbial strains that are capable of well biofilm forming, produce digestive enzymes and resist pathogenic microorganisms to ferment of soybean meal. The result showed that, four microorganism strains including NA5.3; TB2.1; TB4.3 TB4.4 had ability of forming higher biofilm, producing digestive enzymes such as amylase, protease and cellulose. Among them, NA5.3 and TB 4.4 strains had anti-pathogenic bacteria capacity such as Vibrio parahaemolyticus; Enterococcus faecalis; Bacillus cereus and Escherichia coli. Four selected strains were checked effection of pH, temperature, NaCl and bile salt concentration to their biofilm formation. The result indicated suitable conditions for forming biofilm at pH 6-8 range; temperature range 30-37°C; NaCl concentration of 0-3%, bile salt concentrtion of 0.5-2%. The selected strains grew well during solid fermentation process, achieved 1011 CFU/gram. Khô đậu nành là sản phẩm còn lại từ quá trình ép dầu chứa tới 48% protein thô và thường được sử dụng làm thức ăn cho gia cầm, gia súc. Nhưng trong khô đậu nành còn chứa một lượng đáng kể một số chất ức chế dinh dưỡng, các chất ức chế này lại được phân hủy bởi quá trình lên men nhờ một số loài vi khuẩn, nấm mốc hay nấm men. Sản phẩm lên men khô đậu tương được sử dụng làm thức ăn cho gia cầm, gia súc hay nuôi trồng thủy sản. Trong những năm gần đây, các vi sinh vật tạo màng sinh học đã được ứng dụng để lên men các cơ chất như cám gạo, ngô, khô đậu nành… tạo sản phẩm probiotics. Trong nghiên cứu này, chúng tôi đã phân lập và tuyển chọn một số vi sinh vật có lợi tạo màng sinh học cao, sinh các enzyme tiêu hóa và kháng lại một số vi khuẩn gây bệnh cho mục đích lên men khô đậu nành. Kết quả đã lựa chọn được 4 chủng vi khuẩn NA5.3; TB2.1; TB4.3 TB4.4 có khả năng tạo màng sinh học cao, sinh các enzyme như amylase, protease và cellulose. Trong đó,hai chủng NA5.3 và TB4.4 có khả năng kháng lại một số vi khuẩn gây bệnh như Vibrio parahaemolyticus; Enterococcus faecalis; Bacillus cereus và Escherichia coli. Bốn chủng vi khuẩn lựa chọn được nghiên cứu ảnh hưởng của các điều kiện lên khả năng tạo màng sinh học của chúng, chúng thích hợp ở pH 6-8; nhiệt độ 30-37°C; NaCl 0-3%, muối mật 0,5-2%. Sử dụng các chủng vi khuẩn này cho quá trình lên men rắn khô đậu tương, mật độ vi khuẩn sau khi lên men đạt 1011 CFU/gram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.