Nonpoint source pollution (NPSP) from human production and life activities causes severe destruction in river basin environments. In this study, three types of sediment samples (A, NPSP tributary samples; B, non-NPSP mainstream samples; C, NPSP mainstream samples) were collected at the estuary of the NPSP tributary of the Jialing River. High-throughput sequencing of the fungal-speci c internal transcribed spacer (ITS) gene region was used to identify fungal taxa. The impact of NPSP on the aquatic environment of the Jialing River was revealed by analysing the community structure, community diversity and functions of sediment fungi. The results showed that the dominant phylum of sediment fungi was Rozellomycota, followed by Ascomycota, Chytridiomycota, Basidiomycota, Mortierellomycota and Zoopagomycota (relative abundance>1%). NPSP caused a signi cant increase in the relative abundances of Rozellomycota, Saccharomycetes, Microascales, Saccharomycetales, Branch02 and Branch03. In addition, it caused a signi cant decrease in the relative abundances of Chytridiomycota, Dothideomycetes, Capnodiales, Glomerellales, Xylariales and Chaetothyriales.Moreover, NPSP caused signi cant changes in the physicochemical properties of Jialing River sediments, such as pH and available nitrogen (AN), which signi cantly increased the species richness of fungi and caused signi cant changes in the fungal community β-diversity (P<0.05). pH, total phosphorus (TP) and AN were the main environmental factors affecting fungal communities in Jialing River sediments. The functions of sediment fungi mainly involved three types of nutrient metabolism (symbiotrophic, pathotrophic and saprotrophic) and 75 metabolic circulation pathways. NPSP signi cantly improved the NONOXIPENT-PWY, PENTOSE-P-PWY, and PWY-6837 metabolic circulation pathway functions (P<0.05) and inhibited the PWY-7118, PWY-5920, and PWY-6609 metabolic circulation pathway functions (P<0.05). Hence, NPSP causes changes in the community structure and functions of sediment fungi in Jialing River and destroys the stability of the Jialing River Basin ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.