A k*-container of a graph G is a set of k disjoint paths between any pair of nodes whose union covers all nodes of G. The spanning connectivity of G, κ*(G), is the largest k, such that there exists a j*-container between any pair of nodes of G for all 1≤j≤k. If κ*(G)=κ(G), then G is super spanning connected. Spanning connectivity is an important property to measure the fault tolerance of an interconnection network. The divide-and-swap cube DSCn is a newly proposed hypercube variant, which reduces the network cost from O(n2) to O(nlog2n) compared with the hypercube and other hypercube variants. The folded divide-and-swap cube FDSCn is proposed based on DSCn to reduce the diameter of DSCn. Both DSCn and FDSCn possess many better properties than hypercubes. In this paper, we investigate the super spanning connectivity of FDSCn where n=2d and d≥1. We show that κ*(FDSCn)=κ(FDSCn)=d+2, which means there exists an m-DPC(node-disjoint path cover) between any pair of nodes in FDSCn for all 1≤m≤d+2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.