The 3D sand printing (3DSP), by binder jetting technology for rapid casting, has a pivotal role in promoting the development of the traditional casting industry as a result of producing high-quality and economical sand molds. This work presents an approach for monitoring and analyzing powder sand-bed images to serve as a realtime control system in a 3DSP machine. A deep residual network (ResNet) is used to classify the defects occurring during the powder spreading stage of the process. Firstly, a pre-trained network was applied as the initial parameter; then it was fine-tuned on the labelled defective sample dataset to accomplish the task, which defines the sand-bed defects induced in the 3DSP processing. Furthermore, the recognition and positioning of sand-bed defects were readily achieved by dividing the sand-bed images into blocks. Experiments show that the fine-tuned network has a 98.7% classification accuracy on the validation dataset of sand-bed defects and 95.4% recognition accuracy for the sandbed images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.