KRAS is a biomarker for non-small cell lung cancer-targeted therapy, but there is currently no effective KRAS-targeting medication. Realgar is an impelling anticancer drug, however its significance in KRAS mutant lung cancer is uncertain. According to our findings, the IC 50 of H23 (KRAS mutant) cells is 2.99 times lower than that of H1650 (non-KRAS mutant) cells. Flow cytometry and the Hoechst 33258 staining assay revealed that H1650 cells treated with 4 µg/ml realgar had an apoptotic rate of 8.2%, while H23 cells had a rate of 21.46%. Accordingly, realgar was more sensitive to KRAS mutant cells. Transcriptome sequencing test indicated that there were 481 different expression genes in H23 cells treated with realgar. In H23 cells treated with realgar, mitochondria shrank, inner membrane folding was disturbed, and mitochondrial membrane potential crushed. Realgar boosted intracellular Fe 2+ , reactive oxygen species, malondialdehyde and glutathione levels, which were all reversed by ferroptosis inhibitor Fer-1. Realgar decreased phosphorylated p-Raf, p-ERK1/2 and increased p-p38 and p-JNK, whereas only p-Raf was abolished by Fer-1. Raf inhibitor Sorafenib accelerated the realgar-induced ferroptosis. On H23 cells treated with realgar, the expression of GPX4, SCL7A11 decreased while ACSL4 expression increased; this effect could also be amplified by Sorafenib. In conclusion, the present study indicated that realgar may induce ferroptosis by regulating the Raf, and hence plays a role in anti-KRAS mutant lung cancer.
Background Intraperitoneal metastasis is one of the major causes of the high mortality rate of ovarian cancer. Bufalin (BU) is an effective component of the traditional Chinese medicine Chansu that exerts antitumor effects, including metastasis inhibition. In our previous studies, we found that BU inhibited the migration and invasion of ovarian cancer cells. However, the application of BU is limited due to its insolubility, toxicity and imprecise targeting. The aim of this study was to use vitamin E succinate (VES)-grafted chitosan oligosaccharide (CSO)/arginine-glycine-aspartic acid peptide (RGD)-conjugated d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) mixed micelles (VeC/T-RGD MMs) to deliver BU to ovarian cancer cells to inhibit intraperitoneal metastasis. Moreover, the toxicity of BU was reduced by coating it with the mixed micelles to increase its biocompatibility for practical applications. Results The BU-loaded VeC/T-RGD MMs (BU@MMs) had an average diameter of 161 ± 1.4 nm, a zeta potential of 4.49 ± 1.54 mV and a loading efficiency of 2.54%. The results showed that these micelles inhibited cell proliferation, induced apoptosis, and reduced the migration and invasion of A2780 and SKOV3 cells. Further studies indicated that BU@MMs enhanced the levels of e-cadherin and decreased the expression levels of N-cadherin, vimentin and Snail in vitro. In addition, the mixed micelles effectively enhanced the anticancer effect and inhibited intraperitoneal metastasis in intraperitoneal metastatic models. The BU@MMs exhibited fewer toxic side effects than BU, indicating better biocompatibility and biosafety for in vivo applications. Conclusions Our studies show that BU@MMs are a potential multifunctional nano-drug delivery system that can effectively inhibit the intraperitoneal metastasis of ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.