The therapeutic concentration of epsilon-aminocaproic acid (EACA) has been 130 microg/ml or greater for nearly 50 years. We tested the effects on clot growth/disintegration of EACA with a plasmatic model of hyperfibrinolysis in vitro. Human plasma was exposed to 1000 U/ml tissue-type plasminogen activator containing 0, 13, 65 or 130 microg/ml EACA, with clot growth/disintegration kinetics quantified via thrombelastography. Data were analyzed with one-way analysis of variance or Kruskal-Wallis analysis of variance as appropriate. Exposure of plasma to 1000 U/ml tissue-type plasminogen activator resulted in a brief-lived clot, lasting 2 min. EACA at all concentrations tested significantly increased the rate of clot growth compared with samples with 0 microg/ml EACA. Clot strength was significantly increased by EACA in a concentration-dependent fashion. Similarly, EACA significantly prolonged the time of onset of clot lysis and decreased the rate of lysis. Samples with 130 microg/ml EACA had no sign of lysis present for 30 min. Subtherapeutic to therapeutic concentrations of EACA significantly attenuated or abolished fibrinolysis in the presence of a concentration of tissue-type plasminogen activator more than 2000-fold that encountered systemically during cardiopulmonary bypass. Further clinical investigation is warranted to determine whether smaller concentrations of EACA could provide a reduction in bleeding with a concomitant decrease in thrombotic complications.
Patients with rare, congenital deficiencies of contact proteins (e.g., factor XII, prekallikrein, high-molecular-weight kininogen) present an important challenge with regard to safe anticoagulation during cardiopulmonary bypass. Specifically, activated coagulation time values are obtained with devices that utilize contact protein activators to generate thrombin and assess the efficacy of heparin-mediated antithrombin activation, with an activated coagulation time value of 480 s considered 'safe'. Patients with contact protein deficiencies will routinely have activated coagulation time values that exceed normal baseline values to an unpredictable extent, which, when coupled with heparin administration may well exceed 480 s but still potentially not reflect adequate antithrombin activation. We present the successful management of anticoagulation of a patient with either a prekallikrein or kininogen deficiency during cardiopulmonary bypass for coronary artery bypass graft surgery with Hepcon-based heparin concentration determinations. This approach, and the other alternatives previously mentioned, can be utilized to safely care for these rare patients in the setting of cardiac surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.