The cuprizone induced animal model of demyelination is characterized by demyelination in many regions of the brain with high levels of demyelination in the corpus callosum as well as changes in neuronal function by 4-6 weeks of exposure. The model is used as a tool to study demyelination and subsequent degeneration as well as therapeutic interventions on these effects. Historically, the cuprizone model has been shown to contain no alterations to blood-brain barrier integrity, a key feature in many diseases that affect the central nervous system. Cuprizone is generally administered for 4-6 weeks to obtain maximal demyelination and degeneration. However, emerging evidence has shown that the effects of cuprizone on the brain may occur earlier than measurable gross demyelination. This study sought to investigate changes to blood-brain barrier permeability early in cuprizone administration. Results showed an increase in blood-brain barrier permeability and changes in tight junction protein expression as early as 3 days after beginning cuprizone treatment. These changes preceded glial morphological activation and demyelination known to occur during cuprizone administration. Increases in mast cell presence and activity were measured alongside the increased permeability implicating mast cells as a potential source for the blood-brain barrier disruption. These results provide further evidence of blood-brain barrier alterations in the cuprizone model and a target of therapeutic intervention in the prevention of cuprizoneinduced pathology. Understanding how mast cells become activated under cuprizone and if they contribute to blood-brain barrier alterations may give further insight into how and when the blood-brain barrier is affected in CNS diseases. In summary, cuprizone administration causes an increase in blood-brain barrier permeability and this permeability coincides with mast cell activation.
Glial cells, including astrocytes, microglia, and oligodendrocytes, are brain cells that support and dynamically interact with neurons and each other. These intercellular dynamics undergo changes during stress and disease states. In response to most forms of stress, astrocytes will undergo some variation of activation, meaning upregulation in certain proteins expressed and secreted and either upregulations or downregulations to various constitutive and normal functions. While types of activation are many and contingent on the particular disturbance that triggers these changes, there are two main overarching categories that have been delineated thus far: A1 and A2. Named in the convention of microglial activation subtypes, and with the acknowledgement that the types are not completely distinct or completely comprehensive, the A1 subtype is generically associated with toxic and pro-inflammatory factors, and the A2 phenotype is broadly associated with anti-inflammatory and neurogenic factors. The present study served to measure and document dynamic changes in these subtypes at multiple timepoints using an established experimental model of cuprizone toxic demyelination. The authors found increases in proteins associated with both cell types at different timepoints, with protein increases in the A1 marker C3d and the A2 marker Emp1 in the cortex at one week and protein increases in Emp1 in the corpus callosum at three days and four weeks. There were also increases in Emp1 staining specifically colocalized with astrocyte staining in the corpus callosum at the same timepoints as the protein increases, and in the cortex weeks later at four weeks. C3d colocalization with astrocytes also increased most at four weeks. This indicates simultaneous increases of both types of activation as well as the likely existence of astrocytes expressing both markers. The authors also found the increase in two A1 associated proteins (TNF alpha and C3d) did not show a linear relationship in line with findings from other research and indicating a more complex relationship between cuprizone toxicity and astrocyte activation. The increases in TNF alpha and IFN gamma did not occur at timepoints preceding increases in C3d and Emp1, showing that other factors also precipitate the subtypes associated (A1 for C3d and A2 for Emp1). These findings add to the body of research showing the specific early timepoints at which A1 and A2 markers are most increased during the course of cuprizone treatment, including the fact that these increases can be non-linear in the case of Emp1. This provides additional information on optimal times for targeted interventions during the cuprizone model.
Autism was previously seen as involving impairment in social communication, theory of mind, and ability to read social cues. Recently, more neurodiversity-affirming frameworks have been introduced that characterize barriers to communication and lack of social understanding between autistics and their neurotypical peers as being a two-way street: the double-empathy problem. Misunderstandings do not exist purely due to a deficit in autistic communication, but due to two different communication styles that are not interpreted by each other as easily. While this has proved an interesting area of research, attempts to mechanistically model this are lacking, despite the wealth of game theory examples that already exist to model cooperation, competition, and coordination between agents with interdependent strategies. This paper models real-world examples of social situations using Lewis signaling games. Within each pairing, pooling by the sender of different states into the same signals and pooling by the receiver of different signals into the same action represent the type of indirect communication, and responsiveness to indirectness, that are often employed by neurotypical people. In contrast, separating strategies, in which each state is assigned its own distinct signal and each signal triggers its own specific response, represent more direct, specific, and straightforward communication. This work is not meant to make direct conclusions about autistic-neurotypical or autistic-autistic communication, as actual human interactions are far too complex to be governed by the simple strategies outlined in the paper, but rather to serve as an example of the basic principles that could govern or influence such interactions.
Previous research has contrasted fleeting erroneous experiences of familiarity with equally convincing, and often more stubborn erroneous experiences of remembering. While a subset of the former category may present as nonpathological “déjà vu,” the latter, termed “déjà vécu” can categorize a delusion-like confabulatory phenomenon first described in elderly dementia patients. Leading explanations for this experience include the dual process view, in which erroneous familiarity and erroneous recollection are elicited by inappropriate activation of the parahippocampal cortex and the hippocampus, respectively, and the more popular encoding-as-retrieval explanation in which normal memory encoding processes are falsely flagged and interpreted as memory retrieval. This paper presents a novel understanding of this recollective confabulation that builds on the encoding-as-retrieval hypothesis but more adequately accounts for the co-occurrence of persistent déjà vécu with both perceptual novelty and memory impairment, the latter of which occurs not only in progressive dementia but also in transient epileptic amnesia (TEA) and psychosis. It makes use of the growing interdisciplinary understanding of the fluidity of time and posits that the functioning of memory and the perception of novelty, long known to influence the subjective experience of time, may have a more fundamental effect on the flow of time.
Previous research has contrasted fleeting erroneous experiences of familiarity with equally convincing, and often more stubborn erroneous experiences of remembering. While a subset of the former category may present as nonpathological “déjà vu”, the latter, termed “déjà vécu” can categorize a delusion-like confabulatory phenomenon first described in elderly dementia patients. Leading explanations for this experience include the dual process view, in which erroneous familiarity and erroneous recollection are elicited by inappropriate activation of the parahippocampal cortex and the hippocampus, respectively, and the more popular encoding-as-retrieval explanation in which normal memory encoding processes are falsely flagged and interpreted as memory retrieval. This paper presents a novel understanding of this recollective confabulation that builds on the encoding-as-retrieval hypothesis but more adequately accounts for the co-occurrence of persistent déjà vécu with both perceptual novelty and memory impairment, the latter of which occurs not only in progressive dementia but also in transient epileptic amnesia (TEA) and psychosis. It makes use of the growing interdisciplinary understanding of the fluidity of time and posits that the functioning of memory and the perception of novelty, long known to influence the subjective experience of time, may have a more fundamental effect on the flow of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.