Background-Calcific aortic valve stenosis is a common disease in the elderly and is characterized by progressive calcification and fibrous thickening of the valve, but the cellular and molecular mechanisms are not fully understood. We hypothesized that human valve interstitial cells (ICs) are able to differentiate into osteoblast-like cells through the influence of defined mediators and that this process can be modulated pharmacologically. Methods and Results-To
Background-Calcific aortic valve disease is a common condition and is associated with inflammatory changes and expression of osteoblast-like cell phenotypes, but the cellular mechanisms are unclear. Recent studies identified extracellular ATP and P2Y receptor cascade as important regulators of bone remodeling, whereas its breakdown product, adenosine, is known to have anti-inflammatory properties. We hypothesize that extracellular ATP and adenosine have important roles in regulating osteoblast differentiation in human valve interstitial cells, and that this can be a potential target for therapy. Method and Results-Primary cultures of human valve interstitial cells (ICs) treated for 21 days with osteogenic media, ATP, and ATP-␥-S (a stable agonist of the P2Y receptor) revealed a significant increase in alkaline phosphatase (ALP) (an osteoblast marker) activity and expression as measured using spectrophotometric assay and immunocytochemistry staining. Valve ICs treated with adenosine alone did not cause an increase in ALP activity; however, adenosine treatment decreased the ALP activity and expression induced by osteogenic media after 21 days of incubation. In addition, atorvastatin inhibited the activity of ALP induced by ATP in human valve ICs, and enzyme studies revealed that atorvastatin upregulated the breakdown of extracellular ATP into adenosine in human valve ICs after 24-hour treatment. Conclusion-These
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.