The innate immune system contributes to the earliest phase of the host defense against foreign organisms and has both soluble and cellular pattern recognition receptors for microbial products. Two important members of this receptor group, CD14 and the Toll-like receptor (TLR) pattern recognition receptors, are essential for the innate immune response to components of Gram-negative and Gram-positive bacteria, mycobacteria, spirochetes and yeast. We now find that these receptors function in an antiviral response as well. The innate immune response to the fusion protein of an important respiratory pathogen of humans, respiratory syncytial virus (RSV), was mediated by TLR4 and CD14. RSV persisted longer in the lungs of infected TLR4-deficient mice compared to normal mice. Thus, a common receptor activation pathway can initiate innate immune responses to both bacterial and viral pathogens.
NO is a cytotoxic and immunomodulatory cytokine produced by macrophages and dendritic cells. We show that stimulation of murine and human macrophages with the heat shock proteins gp96 and hsp70 results in induction of inducible NO synthase and the production of NO. The release of NO by monocytes exposed to hsp60 has been documented previously. Immature, but not mature, dendritic cells respond in the same manner. The activity of heat shock proteins is relatively unaffected by an antagonist of LPS, and is abrogated by heat denaturation. Macrophages have been shown previously to produce NO in response to stimulation with IFN-γ; stimulation of macrophages with mixtures of IFN-γ and gp96 or hsp70 leads to a synergistic production of NO. The present observations extend the roles of these heat shock proteins in innate immune responses to another potent and highly conserved function of APC.
Members of the Toll-like receptor (TLR) family have been shown to be important in the activation of cells by a variety of microbial ligands. TLRs are thought to mediate the 'recognition event' that follows an encounter between a mammalian cell and a microbial agent. In the case of the response to bacterial lipopolysaccharide (LPS), it is clear that the ability of these cell surface proteins to initiate the events necessary for activation of cells to produce cytokines is dependent upon 'accessory proteins' such as the pattern recognition protein CD14 and the lipopolysaccharide binding protein (LBP). While the role of these proteins in the LPS-specific response is defined, their role in other TLR responses has not been defined, but it is important in understanding these events and, potentially, in designing new therapeutic strategies. Here we report on the role of these proteins in the response to yeast zymosan. The requirements for this response (which unlike the response to LPS is a response to a particulate antigen) and the role of other serum proteins are defined.
Members of the Toll-like receptor (TLR) family have been shown to be important in the activation of cells by a variety of microbial ligands. TLRs are thought to mediate the 'recognition event' that follows an encounter between a mammalian cell and a microbial agent. In the case of the response to bacterial lipopolysaccharide (LPS), it is clear that the ability of these cell surface proteins to initiate the events necessary for activation of cells to produce cytokines is dependent upon 'accessory proteins' such as the pattern recognition protein CD14 and the lipopolysaccharide binding protein (LBP). While the role of these proteins in the LPS-specific response is defined, their role in other TLR responses has not been defined, but it is important in understanding these events and, potentially, in designing new therapeutic strategies. Here we report on the role of these proteins in the response to yeast zymosan. The requirements for this response (which unlike the response to LPS is a response to a particulate antigen) and the role of other serum proteins are defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.