Dissolved CO2 levels (pCO2) are increasing in lentic freshwaters across the globe. Recent studies have shown that this will impact the nutritional quality of phytoplankton as primary producers. However, the extent to which freshwater zooplankton may also be directly affected remains unclear. We test this in three model species representative of the main functional groups of primary consumers in freshwaters; the water flea Daphnia magna, the seed shrimp Heterocypris incongruens and the rotifer Brachionus calyciflorus. We experimentally exposed individuals to three pCO2 levels (1,500; 25,500 and 83,000 ppm) to monitor changes in life history in response to current, elevated and extreme future pCO2 conditions in ponds and shallow lakes. All species had reduced survival under the extreme pCO2 treatment, but the water flea was most sensitive. Body size and reproduction were reduced at 25,500 ppm in the water flea and the seed shrimp and population growth was delayed in the rotifer. Overall, our results show that direct effects of pCO2 could impact the population dynamics of freshwater zooplankton. By differentially modulating the life history of functional groups of primary consumers, elevated pCO2 has the potential to change the evolutionary trajectories of populations as well as the ecological functioning of freshwater communities.
Increasing pCO 2 in freshwaters across the globe will likely be accompanied by acidification. Although this has been linked to reduced calcification, growth, and survival in several marine species, similar responses in freshwater organisms remain largely unexplored. Here, we investigated the direct effects of elevated pCO 2 and associated acidification on the water flea Daphnia magna. As a highly efficient filter feeder, this crustacean is a dominant primary consumer in freshwater zooplankton assemblages, capable of controlling algal growth. It has a high calcium content compared to other zooplankton species, which might make it particularly sensitive since calcification may be impaired under elevated pCO 2 . We exposed newly hatched individuals of four clonal lineages to 27,000 ppm pCO 2 corresponding to a pH of 6.7 in a controlled laboratory experiment. Both survival and calcium content were reduced and juveniles grew slower and matured later under elevated pCO 2 . Adult growth rate was not affected by pCO 2 suggesting that surviving adults are less sensitive or may acclimate over time but at the cost of reduced offspring size. We hypothesize that the combination of elevated pCO 2 and low pH interferes with the calcification process, reflected in slower growth, smaller body size and reduced calcification in D. magna. In turn, this might lead to less efficient control of phytoplankton as an ecosystem service and reduce their competitive advantage over other zooplankters with less calcified bodies.
Dissolved CO2 levels (pCO2) are increasing in lentic freshwaters across the globe. Recent studies have shown that this will impact the nutritional quality of phytoplankton as primary producers, however, the extent to which freshwater zooplankton may also be directly affected remains unclear. We test this in three model species representative of main functional groups of primary consumers in freshwaters; the water flea Daphnia magna, the seed shrimp Heterocypris incongruens and the rotifer Brachionus calyciflorus. We experimentally exposed individuals to three pCO2 levels (1,500; 25,500 and 83,000 ppm) to monitor changes in life history in response to current, elevated and extreme future pCO2 conditions in ponds and shallow lakes. All species had reduced survival under the extreme pCO2 treatment, but the water flea was most sensitive. Body size and reproduction were reduced at 25,500 ppm in the water flea and the seed shrimp and population growth was delayed in the rotifer. Overall, our results show that direct effects of pCO2 could impact the population dynamics of freshwater zooplankton. By differentially modulating the life history of functional groups of primary consumers, elevated pCO2 has the potential to change the evolutionary trajectories of populations as well as the ecological functioning of freshwater communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.