Environmental Sound Recognition has become a relevant application for smart cities. Such an application, however, demands the use of trained machine learning classifiers in order to categorize a limited set of audio categories. Although classical machine learning solutions have been proposed in the past, most of the latest solutions that have been proposed toward automated and accurate sound classification are based on a deep learning approach. Deep learning models tend to be large, which can be problematic when considering that sound classifiers often have to be embedded in resource constrained devices. In this paper, a classical machine learning based classifier called MosAIc, and a lighter Convolutional Neural Network model for environmental sound recognition, are proposed to directly compete in terms of accuracy with the latest deep learning solutions. Both approaches are evaluated in an embedded system in order to identify the key parameters when placing such applications on constrained devices. The experimental results show that classical machine learning classifiers can be combined to achieve similar results to deep learning models, and even outperform them in accuracy. The cost, however, is a larger classification time.
Acoustic cameras allow the visualization of sound sources using microphone arrays and beamforming techniques. The required computational power increases with the number of microphones in the array, the acoustic images resolution, and in particular, when targeting real-time. Such a constraint limits the use of acoustic cameras in many wireless sensor network applications (surveillance, industrial monitoring, etc.). In this paper, we propose a multi-mode System-on-Chip (SoC) Field-Programmable Gate Arrays (FPGA) architecture capable to satisfy the high computational demand while providing wireless communication for remote control and monitoring. This architecture produces real-time acoustic images of 240 × 180 resolution scalable to 640 × 480 by exploiting the multithreading capabilities of the hard-core processor. Furthermore, timing cost for different operational modes and for different resolutions are investigated to maintain a real time system under Wireless Sensor Networks constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.