Global biodiversity is in decline. This is of concern for aesthetic and ethical reasons, but possibly also for practical reasons, as suggested by experimental studies, mostly with plants, showing that biodiversity reductions in small study plots can lead to compromised ecosystem function. However, inferring that ecosystem functions will decline due to biodiversity loss in the real world rests on the untested assumption that such loss is actually occurring at these small scales in nature. Using a global database of 168 published studies and >16,000 nonexperimental, local-scale vegetation plots, we show that mean temporal change in species diversity over periods of 5-261 y is not different from zero, with increases at least as likely as declines over time. Sites influenced primarily by plant species' invasions showed a tendency for declines in species richness, whereas sites undergoing postdisturbance succession showed increases in richness over time. Other distinctions among studies had little influence on temporal richness trends. Although maximizing diversity is likely important for maintaining ecosystem function in intensely managed systems such as restored grasslands or tree plantations, the clear lack of any general tendency for plant biodiversity to decline at small scales in nature directly contradicts the key assumption linking experimental results to ecosystem function as a motivation for biodiversity conservation in nature. How often real world changes in the diversity and composition of plant communities at the local scale cause ecosystem function to deteriorate, or actually to improve, remains unknown and is in critical need of further study.spatial scale | permanent plots | ecosystem services A huge number of experiments has investigated the effects of species diversity (typically the number of species) on ecosystem function in small study plots (≤400 m 2 ), with a general consensus emerging that processes such as primary productivity and nutrient uptake increase as a function of the number of species in a community (1-6). These experiments thus appear to provide a powerful motivation for biodiversity conservation, given that ecosystem functions underpin many ecosystem services from which people benefit, such as forage production and carbon sequestration (1). However, the link between diversityfunction experiments and the widespread argument that ecosystem function should motivate biodiversity conservation (7-11) hinges on the untested assumption that global biodiversity declines apply to the small scale (2). Experimental studies typically focus on small spatial scales not only for practical reasons, but also because organisms, plants in particular, typically interact over short distances (12), and so it is at the small scale that biodiversity is most likely to have an important impact on the functioning of ecosystems (13-15).Habitat loss, invasive species, and overexploitation, among other factors, have accelerated global species' extinction well beyond the background rate (16-18), and it is temptin...
Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.climate change | forest management | understory | climatic debt | range shifts B iological signals of recent global warming are increasingly evident across a wide array of ecosystems (1-7). However, the temperature experienced by organisms at ground level (microclimate) can substantially differ from the atmospheric temperature due to local land cover and terrain variation in terms of vegetation structure, shading, topography, or slope orientation (8-15). The daytime or nighttime surface temperature in rough mountain terrain, for instance, can deviate by up to 9°C from the air temperature (10). Likewise, forest structure creates substantial temperature heterogeneity, with the interior daytime temperature in dense forests being commonly several degrees cooler than in more open habitats during the growing season (12-15). Spatial microclimatic temperature variation can thus be substantial relative to projected changes in average temperature over time, and biotic SignificanceAround the globe, climate warming is increasing the dominance of warm-adapted species-a process described as "thermophilization." However, thermophilization often lags behind warming of the climate itself, with some recent studies showing no response at all. Using a unique database of more than 1,400 resurveyed vegetation plots in forests across Europe and North America, we document significant thermophilization of understory vegetation. However, the response to macroclimate warming was attenuated in forests whose canopies have become denser. This microclima...
Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization). Species responses often lag behind climate warming, but the reasons for such lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in European forests and show that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change. Reciprocal effects between plants and microclimates are key to understanding the response of forest biodiversity and functioning to climate and land-use changes.
Summary1. Atmospheric nitrogen (N) deposition is expected to change forest understorey plant community composition and diversity, but results of experimental addition studies and observational studies are not yet conclusive. A shortcoming of observational studies, which are generally based on resurveys or sampling along large deposition gradients, is the occurrence of temporal or spatial confounding factors. 2. We were able to assess the contribution of N deposition versus other ecological drivers on forest understorey plant communities by combining a temporal and spatial approach. Data from 1205 (semi-)permanent vegetation plots taken from 23 rigorously selected understorey resurvey studies along a large deposition gradient across deciduous temperate forest in Europe were compiled and related to various local and regional driving factors, including the rate of atmospheric N deposition, the change in large herbivore densities and the change in canopy cover and composition. 3. Although no directional change in species richness occurred, there was considerable floristic turnover in the understorey plant community and a shift in species composition towards more shade-tolerant and nutrient-demanding species. However, atmospheric N deposition was not important in explaining the observed eutrophication signal. This signal seemed mainly related to a *Correspondence author. E-mail: kris.verheyen@ugent.be Ó 2011 The Authors. Journal of Ecology Ó 2011 British Ecological Society Journal of Ecology 2012Ecology , 100, 352-365 doi: 10.1111Ecology /j.1365Ecology -2745Ecology .2011 shift towards a denser canopy cover and a changed canopy species composition with a higher share of species with more easily decomposed litter. 4. Synthesis. Our multi-site approach clearly demonstrates that one should be cautious when drawing conclusions about the impact of atmospheric N deposition based on the interpretation of plant community shifts in single sites or regions due to other, concurrent, ecological changes. Even though the effects of chronically increased N deposition on the forest plant communities are apparently obscured by the effects of canopy changes, the accumulated N might still have a significant impact. However, more research is needed to assess whether this N time bomb will indeed explode when canopies will open up again.
The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.