We review behavioural change models (BCMs) for infectious disease transmission in humans. Following the Cochrane collaboration guidelines and the PRISMA statement, our systematic search and selection yielded 178 papers covering the period 2010–2015. We observe an increasing trend in published BCMs, frequently coupled to (re)emergence events, and propose a categorization by distinguishing how information translates into preventive actions. Behaviour is usually captured by introducing information as a dynamic parameter (76/178) or by introducing an economic objective function, either with (26/178) or without (37/178) imitation. Approaches using information thresholds (29/178) and exogenous behaviour formation (16/178) are also popular. We further classify according to disease, prevention measure, transmission model (with 81/178 population, 6/178 metapopulation and 91/178 individual-level models) and the way prevention impacts transmission. We highlight the minority (15%) of studies that use any real-life data for parametrization or validation and note that BCMs increasingly use social media data and generally incorporate multiple sources of information (16/178), multiple types of information (17/178) or both (9/178). We conclude that individual-level models are increasingly used and useful to model behaviour changes. Despite recent advancements, we remain concerned that most models are purely theoretical and lack representative data and a validation process.
Although there is no doubt that significant morbidity and mortality occur during annual influenza epidemics, the role of contextual circumstances, which catalyze seasonal influenza transmission, remains unclear. Weather conditions are believed to affect virus survival, efficiency of transmission and host immunity, but seasonality may also be driven by a tendency of people to congregate indoors during periods of bad weather. To test this hypothesis, we combined data from a social contact survey in Belgium with local weather data. In the absence of a previous in-depth weather impact analysis of social contact patterns, we explored the possibilities and identified pitfalls. We found general dominance of day-type (weekend, holiday, working day) over weather conditions, but nonetheless observed an increase in long duration contacts (1 hour) on regular workdays with low temperatures, almost no precipitation and low absolute humidity of the air. Interestingly, these conditions are often assumed to be beneficial for virus survival and transmission. Further research is needed to establish the impact of the weather on social contacts. We recommend that future studies sample over a broad spectrum of weather conditions and day types and include a sufficiently large proportion of holiday periods and weekends.
BackgroundIndividual-based models (IBMs) are useful to simulate events subject to stochasticity and/or heterogeneity, and have become well established to model the potential (re)emergence of pathogens (e.g., pandemic influenza, bioterrorism). Individual heterogeneity at the host and pathogen level is increasingly documented to influence transmission of endemic diseases and it is well understood that the final stages of elimination strategies for vaccine-preventable childhood diseases (e.g., polio, measles) are subject to stochasticity. Even so it appears IBMs for both these phenomena are not well established. We review a decade of IBM publications aiming to obtain insights in their advantages, pitfalls and rationale for use and to make recommendations facilitating knowledge transfer within and across disciplines.MethodsWe systematically identified publications in Web of Science and PubMed from 2006-2015 based on title/abstract/keywords screening (and full-text if necessary) to retrieve topics, modeling purposes and general specifications. We extracted detailed modeling features from papers on established vaccine-preventable childhood diseases based on full-text screening.ResultsWe identified 698 papers, which applied an IBM for infectious disease transmission, and listed these in a reference database, describing their general characteristics. The diversity of disease-topics and overall publication frequency have increased over time (38 to 115 annual publications from 2006 to 2015). The inclusion of intervention strategies (8 to 52) and economic consequences (1 to 20) are increasing, to the detriment of purely theoretical explorations. Unfortunately, terminology used to describe IBMs is inconsistent and ambiguous. We retrieved 24 studies on a vaccine-preventable childhood disease (covering 7 different diseases), with publication frequency increasing from the first such study published in 2008. IBMs have been useful to explore heterogeneous between- and within-host interactions, but combined applications are still sparse. The amount of missing information on model characteristics and study design is remarkable.ConclusionsIBMs are suited to combine heterogeneous within- and between-host interactions, which offers many opportunities, especially to analyze targeted interventions for endemic infections. We advocate the exchange of (open-source) platforms and stress the need for consistent “branding”. Using (existing) conventions and reporting protocols would stimulate cross-fertilization between research groups and fields, and ultimately policy making in decades to come.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-017-2699-8) contains supplementary material, which is available to authorized users.
The COVID-19 pandemic has shown how a newly emergent communicable disease can lay considerable burden on public health. To avoid system collapse, governments have resorted to several social distancing measures. In Belgium, this included a lockdown and a following period of phased re-opening. A representative sample of Belgian adults was asked about their contact behaviour from mid-April to the beginning of August, during different stages of the intervention measures in Belgium. Use of personal protection equipment (face masks) and compliance to hygienic measures was also reported. We estimated the expected reproduction number computing the ratio of $$\hbox {R}_{0}$$ R 0 with respect to pre-pandemic data. During the first two waves (the first month) of the survey, the reduction in the average number of contacts was around 80% and was quite consistent across all age-classes. The average number of contacts increased over time, particularly for the younger age classes, still remaining significantly lower than pre-pandemic values. From the end of May to the end of July , the estimated reproduction number has a median value larger than one, although with a wide dispersion. Estimated $$\hbox {R}_{0}$$ R 0 fell below one again at the beginning of August. We have shown how a rapidly deployed survey can measure compliance to social distancing and assess its impact on COVID-19 spread. Monitoring the effectiveness of social distancing recommendations is of paramount importance to avoid further waves of COVID-19.
Background: Respiratory syncytial virus (RSV) frequently causes acute lower respiratory infection in children under 5, representing a high burden in Gavi-eligible countries (mostly low-income and lower-middle-income). Since multiple RSV interventions, including vaccines and monoclonal antibody (mAb) candidates, are under development, we aim to evaluate the key drivers of the cost-effectiveness of maternal vaccination and infant mAb for 72 Gavi countries. Methods: A static Multi-Country Model Application for RSV Cost-Effectiveness poLicy (MCMARCEL) was developed to follow RSV-related events monthly from birth until 5 years of age. MCMARCEL was parameterised using countryand age-specific demographic, epidemiological, and cost data. The interventions' level and duration of effectiveness were guided by the World Health Organization's preferred product characteristics and other literature. Maternal vaccination and mAb were assumed to require single-dose administration at prices assumed to align with other Gavi-subsidised technologies. The effectiveness and the prices of the interventions were simultaneously varied in extensive scenario analyses. Disability-adjusted life years (DALYs) were the primary health outcomes for cost-effectiveness, integrated with probabilistic sensitivity analyses and Expected Value of Partially Perfect Information analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.