Fangchinoline (Fan) is a bioactive compound isolated from the Chinese herb S. Moore (Fen Fang Ji). The aim of the present study was to investigate the effect of Fan on the proliferation of SPC-A-1 lung cancer cells, and to define the associated molecular mechanisms. Following treatment with Fan, Cell Counting Kit-8, phase contrast imaging and Giemsa staining assays were used to detect cell viability; flow cytometry was performed to analyze the cell cycle distribution; and reverse transcription-quantitative polymerase chain reaction and western blot assays were used to investigate changes in the expression levels of cell cycle-associated genes and proteins. In the present study, treatment with Fan markedly inhibited the proliferation of SPC-A-1 lung cancer cells and significantly increased the percentage of cells in the G/G phase of the cell cycle in a dose-dependent manner (P<0.05 for 2.5-5 µm; P<0.01 for 10 µm), whereas the percentage of cells in the S and G/M phases were significantly reduced following treatment (P<0.05 for 5 µm; P<0.01 for 10 µm). Mechanistically, Fan significantly reduced the mRNA expression levels of cyclin D1, cyclin-dependent kinase 4 (CDK4) and CDK6 (P<0.05 for 2.5-5 µm; P<0.01 for 10 µm), which are key genes in the regulation of the G/G phase of the cell cycle. Furthermore, treatment with Fan also decreased the expression of phosphorylated retinoblastoma (Rb) and E2F transcription factor-1 (E2F-1) proteins (P<0.05 for 5 µm; P<0.01 for 10 µm). In summary, the present study demonstrated that Fan inhibited the proliferation of SPC-A-1 lung cancer cells and induced cell cycle arrest at the G/G phase. These effects may be mediated by the downregulation of cellular CDK4, CDK6 and cyclin D1 levels, thus leading to hypophosphorylation of Rb and subsequent suppression of E2F-1 activity. Therefore, the present results suggest that Fan may be a potential drug candidate for the prevention of lung cancer.
Epidemiologic studies have investigated the association of polymorphisms in 5-hydroxytryptamine type 2A receptor (5HT2A) gene and migraine susceptibility, but the results of those studies are inconclusive. To obtain a more systematic estimation of the association, we conducted a comprehensive search to examine all the eligible studies of 5HT2A polymorphisms and migraine risk. The odd ratios (ORs) with 95% confidence intervals (CIs) were used to determine the strength of the association. Publication bias was analyzed by Begg's funnel plots. Seven eligible studies regarding 5HT2A T102C and A-1438G polymorphisms with 721 cases and 713 controls were included in this meta-analysis. Overall, no significant associations were found between 5HT2A T102C (for T vs. C: OR = 1.029, 95% CI = 0.870-1.217, p = 0.739; for TT vs. CC: OR = 1.083, 95% CI = 0.760-1.544, p = 0.657; for TT + TC vs. CC: OR = 1.066, 95% CI = 0.802-1.416, p = 0.662; for TT vs. TC + CC: OR = 1.017, 95% CI = 0.774-1.336, p = 0.904) or A-1438G (for T vs. C: OR = 0.996, 95% CI = 0.726-1.365, p = 0.979; for TT vs. CC: OR = 0.983, 95% CI = 0.511-1.891, p = 0.960; for TT + TC vs. CC: OR = 1.118, 95% CI = 0.654-1.910, p = 0.684; for TT vs. TC + CC: OR = 0.890, 95% CI = 0.528-1.499, p = 0.661) polymorphisms and migraine risk. The further subgroup analysis by ethnicity, assay and disease type also found no significant association using four genetic models. Meanwhile, the publication bias analysis suggests that there is no publication bias in these studies. In conclusion, our current meta-analysis implies that 5HT2A T102C and A-1438G polymorphisms may be not risk factors in the pathogenesis of migraine.
Objective: Multiple gene targets have been reported for treatment of non-small cell lung cancer (NSCLC), however, the accompanying genetic tolerance was reported increasingly. Therefore, it is important to find new biomarkers or therapeutic targets in treatment of NSCLC. Methods: The expression levels of miR-371b-5p were detected by qRT-PCR in NSCLC tissues and cell lines. To evaluate the effect of miR-371b-5p on NSCLC progression, we firstly transfected the miR-371b-5p inhibitor for construction of the miR-371b-5p down-regulated cell model. Then the cell proliferation, migration, invasion and cell apoptosis were detected. In addition, the expression levels of adhesion factors were detected. The target gene of miR-371b-5p was identified by bioinformatics analysis, and rescue experiment was conducted to validate the effect of miR-371b-5p on proliferation, migration and invasion of NSCLC. Results: Our findings revealed that the miR-371b-5p was overexpressed in NSCLC and could markedly promote the cell proliferation, migration and invasion. Expression levels of both ICAM-1 and VCAM-1 were significantly down-regulated when treated by miR-371b-5p inhibitor. Moreover, dual-luciferase reporter assay showed that the miR-371b-5p targeted SCAI in regulation of cell proliferation, migration and invasion, and the expression of miR-371b-5p was negatively associated with SCAI in NSCLC tissues and cell lines. Rescue experiment revealed that the miR-371b-5p could rescue the effect of SCAI on cell proliferation, migration and invasion. Conclusion: Our results suggest that the miR-371b-5p and SCAI may serve as novel prognostic biomarkers and therapeutic targets for NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.