Surveys of floral honey composition have established that the three major components are fructose, glucose, and water, averaging 38.2, 31.3 and 17.2%, respectively. Glucose and fructose are the only monosaccharides in honey and it is these sugars, combined in various forms, that comprise the di-and trisaccharide fractions of floral honey. Several laboratories, utilising various chemical and physical methods, have been responsible for the isolation and characterisation of ten disaccharides, ten trisaccharides, and two higher sugars from floral honey. Several of these occur only rarely in nature, and the trisaccharide erlose, produced by the action of honeybee invertase on sucrose, was first discovered as a component of honey. Honeydew honey is produced by the honeybee from honeydew deposits left by various hemipterous insects on their host plant. Honeydew contains a more complex mixture of sugars than does nectar, and honeydew honey is appreciably higher in reducing disaccharides and higher sugars than is floral honey. The trisaccharide melizitose, not found in floral honey, is often present in levels exceeding 10% in honeydew honey. The precipitation of glucose from honey, termed granulation, is often technologically undesirable as it is sometimes followed by fermentation. Indices such as the glucose/water ratio have been used to predict granulation tendency. Small amounts of hydroxymethylfurfural (HMF) occur naturally in honey, resulting from the acid catalysed dehydration of the hexoses, particularly fructose. High levels of HMF suggest adulteration of honey with acid inverted invert syrup and several methods are available for its determination. The conversion of nectar and honeydew to the complex array of honey sugars by the honeybee involves a variety of chemical and biochemical processes, some of which are now understood, while others remain to be elucidated.
Cereal Chem. 74(2):176-181For the first time, alkaline hydrogen peroxide (AHP) extraction conditions were used to isolate hemicellulose (arabinoxylan) from destarched corn fiber. Yields of the water-soluble hemicellulose B ranged from 35% (24 hr extraction at 25ºC) to 42% (2 hr extraction at 60ºC). The hemicellulose B resulting from the 2 hr extraction (pH 11.5) was off-white in color, and a very low proportion (1.7%) of water-insoluble hemicellulose A was extracted. AHP treatment caused delignification and facilitated the alkaline extraction of hemicellulose from the lignocellulosic fiber matrix. In the absence of H 2 O 2 , yields were reduced by more than one-third when using otherwise identical extraction conditions of time, temperature and pH. In the standard protocol, corn fiber, NaOH solution, and H 2 O 2 were mixed in a 1:25:0.25 (w/v/w) ratio. Extractions were conducted at pH 11.5 at 25ºC or 60ºC. The pH was adjusted to 11.5 by addition of NaOH at ambient and elevated temperatures. The optimum hemicellulose yield (51.3%; dry, starch-free basis) was obtained when the pH was increased to 12.5 for the final one-half of the extraction period. Products obtained after extraction at pH values greater than 11.5 were tan in color, however, and the goal of the research has been to isolate white hemicellulose B and then evaluate its properties. Under most conditions, the yields of hemicellulose B, potentially the most useful form for food and industrial applications, exceeded those of hemicellulose A by more than 10-fold. The hemicellulose B products were lighter in color than those obtained using traditional alkaline extraction conditions of refluxing with calcium or sodium hydroxide. Steps prior to extractions with alkaline H 2 O 2 , such as grinding to 20 mesh and extracting with azeotropic toluene-ethanol, were found to be unnecessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.