SUMMARY Mammals have evolved neurophysiologic reflexes such as coughing and scratching to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases such as asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.
This article presents a quantitative analysis of the role played by poly(vinyl pyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface; and ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm2 for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm2, respectively, when 100-nm Ag cubes were used as the seeds.
Highlights d Mrgprb2 is a mast cell (MC)-specific receptor that mediates non-histaminergic itch d Compared to FcεRI, Mrgprb2 activation releases more tryptase and less monoamines d Mrgprb2 activation of MCs excites non-histaminergic itchsensory neurons d MRGPRX2 may be a target for allergic contact dermatitisassociated itch in humans Authors
Although both persistent itch and inflammation are commonly associated with allergic contact dermatitis (ACD), it is not known if they are mediated by shared or distinct signaling pathways. Here we show that both TRPA1 and TRPV1 channels are required for generating spontaneous scratching in a mouse model of ACD induced by squaric acid dibutylester (SADBE), a small molecule hapten, through directly promoting the excitability of pruriceptors. TRPV1 but not TRPA1 channels protect the skin inflammation, as genetic ablation of TRPV1 function or pharmacological ablation of TRPV1-positive sensory nerves promotes cutaneous inflammation in the SADBE-induced ACD. Our results demonstrate that persistent itch and inflammation are mediated by distinct cellular and molecular mechanisms in a mouse model of ACD. Identification of distinct roles of TRPA1 and TRPV1 in regulating itch and inflammation may provide new insights into the pathophysiology and treatment of chronic itch and inflammation in ACD patients.
Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.