Due to the need for reducing system size and weight while increasing performance, many military and commercial systems today require high-temperature electronics to run actuators, high-speed motors or generators. Of the many passive devices required to satisfy the needs for a complete high temperature system, none has been more problematic than the capacitor, particularly for larger devices requiring values of several micro-or milli-farads. Here we introduce a polymer metal composite we have recently developed that meets typical aerospace design constraints of high reliability, robustness, light-weight, as well as high temperature (up to 300°C) operation.Our recent discovery of the capacitive behaviour in perfluorinated sulfonic acid polymers sandwiched between metal electrodes has lead to the exciting development of high temperature capable high density passive storage components. These composites exhibit capacitance per unit planar area of ~1.0 mF cm -2 or 40 mF/g for a ~100 µm-thick polymer substrate, with only a small predictable decrease in capacitance immediately after heating to 100°C followed by constant capacitance up to 300°C. Here we report the design and testing of single step microfabrication of metal electrodes to these polymer composites sandwiched between two thin metal films along with their performance at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.