We have successfully reached the world record 32.35 T direct-current magnetic field by using a homemade all-superconducting magnet. The magnet has consisted of a 15 T low temperature superconductor outsert coil and two high temperature superconductor no-insulation (NI) insert coils using a conductor tape coated of REBCO (REBa 2 Cu 3 O x , where RE=Y, Gd). This result proves the feasibility of reaching a strong magnetic field up to 32 T by using the NI process as well as the superconductor magnet with insulation. This magnet is one of the essential parts of the 'Synergetic Extreme Condition User Facility' project, which provides expertize, instrumentation, and infrastructure for investigating matter science under extreme physical conditions. We thought that such a strong superconductor magnet would bring the possibility to explore more mystery in physics, medicine, pharmacy, etc.
The hierarchical nature of language requires human brain to internally parse connected-speech and incrementally construct abstract linguistic structures. Recent research revealed multiple neural processing timescales underlying grammar-based configuration of linguistic hierarchies. However, little is known about where in the whole cerebral cortex such temporally scaled neural processes occur. This study used novel magnetoencephalography source imaging techniques combined with a unique language stimulation paradigm to segregate cortical maps synchronized to 3 levels of linguistic units (i.e., words, phrases, and sentences). Notably, distinct ensembles of cortical loci were identified to feature structures at different levels. The superior temporal gyrus was found to be involved in processing all 3 linguistic levels while distinct ensembles of other brain regions were recruited to encode each linguistic level. Neural activities in the right motor cortex only followed the rhythm of monosyllabic words which have clear acoustic boundaries, whereas the left anterior temporal lobe and the left inferior frontal gyrus were selectively recruited in processing phrases or sentences. Our results ground a multi-timescale hierarchical neural processing of speech in neuroanatomical reality with specific sets of cortices responsible for different levels of linguistic units.
Insomnia disorder is the most common sleep disorder and has drawn increasing attention. Many studies have shown that hyperarousal plays a key role in the pathophysiology of insomnia disorder. However, the specific brain mechanisms underlying insomnia disorder remain unclear. To elucidate the neuropathophysiology of insomnia disorder, we investigated the brain functional networks of patients with insomnia disorder and healthy controls across the sleep-wake cycle. EEG-fMRI data from 33 patients with insomnia disorder and 31 well-matched healthy controls during wakefulness and nonrapid eye movement sleep, including N1, N2 and N3 stages, were analyzed. A medial and anterior thalamic region was selected as the seed considering its role in sleep-wake regulation. The functional connectivity between the thalamic seed and voxels across the brain was calculated. ANOVA with factors "group" and "stage" was performed on thalamus-based functional connectivity. Correlations between the misperception index and altered functional connectivity were explored. A group-by-stage interaction was observed at widespread cortical regions. Regarding the main effect of group, patients with insomnia disorder demonstrated decreased thalamic connectivity with the left amygdala, parahippocampal gyrus, putamen, pallidum and hippocampus across wakefulness and all three nonrapid eye movement sleep stages. The thalamic connectivity in the subcortical cluster and the right Guangyuan Zou and Yuezhen Li contributed equally to this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.