Purpose BRAF V600E mutation can compensate for the low detection rate by fine-needle aspiration (FNA) and is related to aggressiveness and lymph node metastasis. This study aimed to investigate the relationship between texture analysis features based on magnetic resonance imaging (MRI) and mutations. Methods Retrospective analysis was performed on patients with postoperative pathology confirmed papillary thyroid carcinoma (PTC) from 2017 to 2021. One thousand one hundred and thirty-two texture features were extracted from T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) separately by outlining the tumor volume of interest (VOI). Univariate, minimum redundancy maximum relevance (mRMR), and multivariate analyses were used for feature selection to construct 3 models (T2WI, CE-T1WI, and combined model) to predict mutation. The reproducibility between observers was evaluated by intraclass correlation coefficient (ICC). Receiver operating characteristic (ROC) analysis was used to assess the performance of models. The diagnostic performance of the optimal cut-off value of models were calculated and validated by 10-fold cross-validation. Results A total of 80 PTCs (22 BRAF V600E wild-type and 58 BRAF V600E mutant) were included in our study. Good interobserver agreement was found on texture features we selected (all ICCs >0.75). The area under the ROC curves (AUCs) for the T2WI model, CE-T1WI model, and combined model were 0.83 (95% CI: 0.75–0.91), 0.83 (95% CI: 0.73–0.90), and 0.88 (95% CI: 0.81–0.94), respectively. The accuracy, sensitivity, specificity, PPV, and NPV were 0.776, 0.679, 0.905, 0.905, and 0.679 for the T2WI model at a cut-off value of 0.674; 0.755, 0.750, 0.762, 0.808, and 0.696 for the CE-T1WI model at a cut-off value of 0.573; 0.816, 0.893, 0.714, 0.806, and 0.833 for the combined model at a cut-off value of 0.420. Conclusion MRI-based texture analysis could be a potential method for predicting BRAF V600E mutation in PTC preoperatively.
This study aimed to evaluate the feasibility of applying a clinical multimodal radiomics nomogram based on ultrasonography (US) and multiparametric magnetic resonance imaging (MRI) for the prediction of cervical lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) preoperatively. We performed retrospective evaluations of 133 patients with pathologically confirmed PTC, who were assigned to the training cohort and validation cohort (7 : 3), and extracted radiomics features from the preoperative US, T2-weighted (T2WI),diffusion-weighted (DWI), and contrast-enhanced T1-weighted (CE-T1WI) images. Optimal subsets were selected using minimum redundancy, maximum relevance, and recursive feature elimination in the support vector machine (SVM). For LNM prediction, the radiomics model was constructed by SVM, and Multi-Omics Graph cOnvolutional NETworks (MOGONET) was used for the effective classification of multiradiomics data. Multivariable logistic regression incorporating multiradiomics signatures and clinical risk factors was used to generate a nomogram, whose performance and clinical utility were assessed. Results showed that the nine most predictive features were separately selected from US, T2WI, DWI, and CE-T1WI images, and 18 features were selected in the combined model. The combined radiomics model showed better performance than models based on US, T2WI, DWI, and CE-T1WI. In a comparison of the combined radiomics and MOGONET model, receiver operating curve analysis showed that the area under the curve (AUC) value (95% CI) was 0.84 (0.76–0.93) and 0.84 (0.71–0.96) for the MOGONET model in the training and validation cohorts, respectively. The corresponding values (95% CI) for the combined radiomics model were 0.82 (0.74–0.90) and 0.77 (0.61–0.94), respectively. The MOGONET model had better performance and better prediction specificity compared with the combined radiomics model. The nomogram including the MOGONET signature showed a better predictive value (AUC: 0.81 vs. 0.88) in the training and validation (AUC: 0.74vs. 0.87) cohorts, as compared with the clinical model. Calibration curves showed good agreement in both cohorts. The applicability of the clinical multimodal radiomics (CMR) nomogram in clinical settings was validated by decision curve analysis. In patients with PTC, the CMR nomogram could improve the prediction of cervical LNM preoperatively and may be helpful in clinical decision-making.
Purpose We aimed to diagnose the benign or malignant of large thyroid nodules by quantitative analysis of diffusion-weighted imaging (DWI). Methods 82 thyroid nodules were investigated retrospectively and divided them into benign (n = 62) and malignant groups (n = 20). DWI data were acquired, and apparent diffusion coefficients (ADCs) were calculated. Univariate and multivariate logistic regression were conducted to identify independent predictors, and develop a prediction model. We performed receiver operating characteristic (ROC) analysis to determine the optimal threshold of risk factors, and constructed combined threshold models. Diagnostic performance metrics, including area under the ROC curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the ratio of unnecessary fine-needle aspiration biopsy (UFNAB) of all models were calculated and compared with the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) result. Results Two independent predictors of malignant nodules were identified by multivariate analysis: DWI signal intensity ratio (DWISIR, P = 0.007) and minimum ADC (ADCmin, P < 0.001). At a cutoff value of 0.198, the multivariate prediction model had an AUC of 0.946. The combined threshold model of DWISIR and ADCmin had the highest specificity up to 100% and the lowest UFNAB rate of 0%. Conclusion Quantitative DWI demonstrated favorable malignant thyroid nodule diagnostic efficacy. Combined thresholds of DWISIR and ADCmin greatly reduced the UFNAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.