Gamma-ray burst (GRB) 150910A was detected by Swift/Burst Alert Telescope (BAT), and then rapidly observed by Swift/XRT, Swift/Ultraviolet-Optical Telescope, and ground-based telescopes. We report Lick Observatory spectroscopic and photometric observations of GRB 150910A, and we investigate the physical origins of both the optical and X-ray afterglows, incorporating data obtained with BAT and XRT. The light curves show that the jet-emission episode lasts ∼360 s with a sharp pulse from BAT to XRT (Episode I). In Episode II, the optical emission has a smooth onset bump followed by a normal decay (α R,2 ≈ −1.36), as predicted in the standard external shock model, while the X-ray emission exhibits a plateau (α X,1 ≈ −0.36) followed by a steep decay (α X,2 ≈ −2.12). The light curves show obvious chromatic behavior with an excess in the X-ray flux. Our results suggest that GRB 150910A is an unusual GRB driven by a newly born magnetar with its extremely energetic magnetic dipole (MD) wind in Episode II, which overwhelmingly dominates the observed early X-ray plateau. The radiative efficiency of the jet prompt emission is η γ ≈ 11%. The MD wind emission was detected in both the BAT and XRT bands, making it the brightest among the current sample of MD winds seen by XRT. We infer the initial spin period (P 0) and the surface polar cap magnetic field strength (B p ) of the magnetar as 1.02 × 1015 G ≤ B p ≤ 1.80 × 1015 G and 1 ms ≤ P 0 v ≤ 1.77 ms, and the radiative efficiency of the wind is η w ≥ 32%.
The physical origin of fast radio bursts (FRBs) remains unclear. Finding multiwavelength counterparts of FRBs can provide a breakthrough for understanding their nature. In this work, we perform a systematic search for astronomical transients whose positions are consistent with FRBs. We find an unclassified optical transient AT2020hur (α = 01h58m00.ˢ750 ± 1″, δ = 65 ° 43 ′ 00 .″ 30 ± 1 ″ ) that is spatially coincident with the repeating FRB 180916B (α = 01h58m00.ˢ7502 ± 2.3 mas, δ = 65 ° 43 ′ 00 .″ 3152 ± 2.3 mas; Marcote et al. 2020). The chance possibility of the AT2020hur–FRB 180916B association is about 0.04%, which corresponds to a significance of 3.5σ. We develop a giant flare (GF) afterglow model to fit AT2020hur. Although the GF afterglow model can interpret the observations of AT2020hur, the derived kinetic energy of such a GF is at least three orders of magnitude larger than that of a typical GF, and a lot of fine-tuning and coincidences are required for this model. Another possible explanation is that AT2020hur might consist of two or more optical flares originating from the FRB source, e.g., fast optical bursts produced by the inverse Compton scattering of FRB emission. Besides, AT2020hur is located in one of the activity windows of FRB 180916B, which provides independent support for the association. This coincidence may be due to the optical counterparts being subject to the same periodic modulation as FRB 180916B, as implied by the prompt FRB counterparts. Future simultaneous observations of FRBs and their optical counterparts may help to reveal their physical origin.
The X-ray plateau emission observed in many long gamma-ray bursts (LGRBs) has been usually interpreted as the spin-down luminosity of a rapidly spinning, highly magnetized neutron star (millisecond magnetar). If this is true, then the magnetar may emit extended gravitational wave (GW) emission associated with the X-ray plateau due to nonaxisymmetric deformation or various stellar oscillations. The advanced LIGO and Virgo detectors have searched for long-duration GW transients for several years; no evidence of GWs from any magnetar has been found until now. In this work, we attempt to search for signatures of GW radiation in the electromagnetic observation of 30 LGRBs under the assumption of the magnetar model. We utilize the observations of the LGRB plateau to constrain the properties of the newborn magnetar, including the initial spin period P 0, dipole magnetic field strength B p , and the ellipticity ϵ. We find that there are some tight relations between magnetar parameters, e.g., ϵ ∝ B p 1.29 and B p ∝ P 0 1.14 . In addition, we derive the GW strain for the magnetar sample via their spin-down processes, and find that the GWs from these objects may not be detectable by the aLIGO and Einstein Telescope (ET) detectors. For a rapidly spinning magnetar (P ∼ 1 ms, B ∼ 1015 G), the detection horizon for the advanced LIGO O5 detector is ∼180 Mpc. The detection of such a GW signal associated with the X-ray plateau would be a smoking gun that the central engine of a GRB is a magnetar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.