To expand the application of machine learning in movie data, in order to explore the correlation between network big data and film time-series data, based on the machine learning algorithm, the correlation and multifractal characteristics of happiness index (HI) and film box office (BO) were studied and described by introducing multifractal crossover method. On this basis, some indicators are introduced to optimize the neural network model so that the optimization model can describe and predict the box office and other related information well. The results show that the critical values of the happiness index and box office show a linear change trend with the increase of freedom, and the corresponding change curves of the happiness index and box office show obvious nonlinear characteristics, which can be divided into slow increase stage, steady increase stage, and approximately gentle stage. With the increase of iteration parameter q value, the change trend of the long-term and short-term curves of the generalized Hurst function is basically the same, and the difference between the two is getting smaller and smaller, while the difference between the two curves is getting bigger and bigger with the increase of q value of Renyi function. The changing trend of the dynamic Hurst index in the sliding window period all shows that it first rises rapidly to a certain value, then fluctuates rapidly with the increase of time, then drops rapidly to a constant value, and finally continues to show repeated small range fluctuation. Under the influence of time-series parameter α, the original sequence changes the most, the replacement sequence changes the medium, and the corresponding rearrangement sequence changes the least. The overall distribution of box office prediction data conforms to the characteristics of linear variation. The prediction index of the optimized HI-LSTM (Happiness Index-Long term short term memory neural network) model is higher in the box office, indicating that the model has better performance in describing and predicting the box office. This study can provide a theoretical basis for the correlation study of network big data and film data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.