Background: Atrial fibrillation (AF) is related to structural and electrical atria remodeling. Atrial fibrosis development and progression is characteristic of structural remodeling and is taken as the AF perpetuation substrate. Increasing evidence has confirmed that microRNAs (miRNAs) are associated with AF, including cardiac fibrosis. Methods: Pericardial fluid (PF) samples were collected from nine adult patients who had congenital heart disease with persistent AF or sinus rhythm (SR) undergoing surgery. Abnormally expressed miRNAs were acquired, and P<0.05 and fold change >2 were taken as the thresholds of differentially expressed miRNAs (DE-miRNAs). The predicted target genes were obtained by miRTarBase. The Database for Annotation, Visualization and Integrated Discovery was used to annotate functions and analyze pathway abundance for latent targets of DE-miRNAs. STRING database was applied to construct a protein-protein interplay (PPI) network, and Cytoscape software was used to visualize the miRNA-hub gene-Kyoto Encyclopedia of Genes and Genomes (KEGG) network. DE-miRNA expressions were evaluated by quantitative polymerase chain reaction (qPCR).Results: Fifty-five exosomal DE-miRNAs were found between the AF and SR samples; these included 24 miRNAs that were upregulated and 31 that were downregulated. For the top 3 downregulated miRNAs (miR-382-3p, miR-3126-5p, and miR-450a-2-3p) 283 predicted target genes were identified, and were implicated in cardiac fibrosis-related pathways, including the hypoxia-inducible factor-1 (HIF1), mitogenactivated protein kinase (MAPK), and adrenergic and insulin pathways. The top 10 hub genes in the PPI network, including mitogen-activated protein kinase 1 (MAPK1) and AKT serine/threonine kinase 1 (AKT1), were identified as hub genes. By establishing the miRNA-hub gene-KEGG network, we observed that these hub genes, which were regulated by miR-382-3p, miR-3126-5p, and miR-450a-2-3p, were involved in many KEGG pathways associated with cardiac fibrosis, such as the AKT1/glycogen synthase kinsase-3β (GSK-3β) and transforming growth factor-β (TGF-β)/MAPK1 pathways. Conclusions: The findings of the present study suggest that miR-382-3p, miR-450a-2-3p, and miR-3126-5p contained in exosomes in human PF are pivotal in the progression of AF. The results of qPCR showed that miR-382-3p was consistent with our sequencing data, which indicates its potential value as a therapeutic target for AF.
The purpose of this study was to investigate the regulatory mechanism of miR-450a-2-3p in myocardial fibrosis in patients with atrial fibrillation. For this purpose, the expression profile of GSE55296 was extracted from the GEO database, and differentially expressed lncRNAs were identified. Gene ontology analysis of the target genes of mir-450a-2-3p indicated that there was a regulatory relationship between LINC00636 and miR-450a-2-3p. Further, the expression levels of the analyzed RNAs were confirmed by RT-qPCR. TGF-β1-induced cardiac fibroblasts (CFs) and human umbilical vein endothelial cells (HUVECs) were used to establish a myocardial fibrosis model and endothelium-mesenchymal transformation (EMT) model in vivo. We hypothesized that exosomes containing LINC00636 regulate the expression of miR-450a-2-3p. LINC00636 was positively correlated with the expression of miR-450a-2-3p. The overexpression of miR-450a-2-3p suppressed the MAPK1 expression in CFs, thereby inhibiting the expression of α-SMA, COL1, and COL3 and preventing CF proliferation. In HUVECs, the miR-450a-2-3p overexpression upregulated the expression of VE-Cadherin (VE-Cad) and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) by inhibiting the mitogen-activated protein kinase 1 (MAPK1) expression, whereas the expression levels of vimentin, COL1, and COL3 decreased. These results indicate that LINC00636, which is present in human pericardial fluid, is an antifibrotic molecule that inhibits MAPK1 through the miR-450a-2-3p overexpression and improves cardiac fibrosis in patients with atrial fibrillation.
Background: The occurrence of atrial fibrillation is often accompanied by myocardial fibrosis. An increasing number of studies have shown that intestinal flora is involved in the occurrence and development of a variety of cardiovascular diseases. This study explores the relationship between changes in the structure and function of intestinal flora and the progression of myocardial fibrosis in patients with persistent atrial fibrillation.Methods: Serum and stool samples were collected from 10 healthy people and 10 patients with persistent atrial fibrillation (PeAF), and statistical analyses were performed on the subjects' clinical baseline conditions. ELISA was used to measure the levels of carboxy-terminal telopeptide of type I collagen (CTX-I), propeptide of type I procollagen (PICP), procollagen III N-terminal propeptide (PIIINP), fibroblast growth factor-23 (FGF-23), and transforming growth factor-beta 1 (TGF-β1) in serum. Through 16S rRNA sequencing technology, the structural composition of the intestinal flora was detected and analyzed. In addition, metabolomics data were analyzed to determine the differences in the metabolites produced by the intestinal flora of the subjects.Results: By comparing the baseline data of the subjects, it was found that compared with those of the control group, the levels of creatinine (CRE) and serum uric acid (SUA) in the serum of PeAF patients were significantly increased. In addition, we found that the levels of CTX-I, PICP, PIIINP, and TGF-β1 in the serum of PeAF patients were significantly higher than those of the control group subjects. Although the control and PeAF groups exhibited no significant differences in the α diversity index, there were significant differences in the β diversity indexes (Bray-Curtis, weighted UniFrac and Anosim). At the phylum, family and species levels, the community structure and composition of the intestinal flora of the control group and those of the PeAF group showed significant differences. In addition, the compositions of the intestinal metabolites in the two different groups of people were significantly different. They were correlated considerably with PIIINP and specific communities in the intestinal flora.Conclusion: Pathologically, PeAF patients may have a higher risk of myocardial fibrosis. Systematically, abnormal changes in the structure and composition of the intestinal flora in PeAF patients may lead to differences in intestinal metabolites, which are involved in the process of myocardial fibrosis through metabolite pathways.
Background: Unstable angina pectoris (UAP) is a type of Coronary artery disease (CAD) characterized by a series of angina symptoms. Insulin-like growth factor 1 (IGF-1) system may be related to CAD. However, the correlation between the IGF-1 system, metabolism, and gut microbiota has not been studied. In the present study, we investigated the alterations of serum IGF-1 system, metabolomics, and gut microbiota in patients with UAP. Methods: Serum and stool samples from healthy volunteers and UAP patients were collected. Serum metabolomics, PAPP-A, IGF-1, IGFBP-4, STC2, hs-CRP, TNF-α, and IL-6 were detected in serum samples by LC-MS, and commercial ELISA kits, respectively. Fecal short-chain fatty acids (SCFAs) were measured by gas chromatography. 16S rDNA was used to measure the changes of the gut microbiota. The correlation of the above indicators was analyzed. Results: There were 24 upregulated and 31 downregulated metabolites in the serum of UAP patients compared to those in the controls. Pathway analysis showed that these metabolites were enriched in pathways including linoleic acid metabolism, amino acid metabolism, starch metabolism, sucrose metabolism, and citrate cycle (TCA cycle), etc. Additionally, the UAP patients had lower fecal levels of 2-hydroxyisobutyric acid and succinic acid. 16S rDNA sequencing results showed that the relative abundances of Bacteroidetes, Synergistetes, Lactobacillaceae, Burkholderiaceae, Synergistaceae, and Subdoligranulum were significantly higher in the UAP patients than the healthy subjects. Moreover, the UAP patients had lower serum IGF-1, IGFBP-4, and STC2 and higher serum inflammatory cytokines (hs-CRP, TNF-α, and IL-6) levels than the healthy controls. Furthermore, there was a strong correlation between serum amino acids and IL-6, which played an important role in the development of UAP. Conclusions: These results indicated that the UAP patients had decreased serum IGF-1 level and imbalanced amino acids metabolism, which may be caused by the altered gut microbiota. It may provide a new therapeutic strategy for unstable angina pectoris.
In recent years, neuroimaging evidence shows that the brains of Parkinson disease (PD) with impulse control disorders (ICDs) patients have functional disconnection changes. However, so far, it is still unclear whether the topological organization is damaged in PD patients with ICD. In this study, we aimed to explore the functional brain network in 18 patients with PD with ICDs (PD-ICD) and 18 patients with PD without ICDs (PD-nICD) by using functional magnetic resonance imaging and graph theory approach. We found that the PD-ICD patients had increased clustering coefficient and characteristic path length, while decreased small-world index compared with PD-nICD patients. Furthermore, we explored the hypothesis whether the abnormality of the small-world network parameters of PD-ICD patients is accompanied by the change of nodal centrality. As we hypothesized, the nodal centralities of the default mode network, control network, and dorsal attention network were found to be significantly damaged in the PD-ICD group compared with the PD-nICD group. Our study provides more evidence for PD-ICD patients’ brain network abnormalities from the perspective of information exchange, which may be the underlying pathophysiological basis of brain abnormalities in PD-ICD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.