This paper proposes an orthogonal concave coupling mechanism based on wireless charging for unmanned aerial vehicles (UAVs); the original edge adopts a concave transmitting coil. So as not to occupy the gimbal position at the receiving end, the receiving coil is installed on the landing gear of the UAV perpendicular to the transmitting coil to form an orthogonal coupling magnetic field. This study conducted a finite element simulation of the coupling mechanism using Ansys Maxwell to test the mechanism’s coupling capability and anti-offset performance. The spatial distribution of the system’s magnetic field was constrained, and the magnetic flux leakage of the system was reduced by optimizing the transmitter structure. The system employed a double-sided LCC compensation topology network and used wireless communication to achieve constant voltage/constant current closed-loop control. Finally, the experimental platform was built, and the results show that the system output power was able to reach 960 W with 85.7% efficiency, and could realize the closed-loop control of charging with 48 V constant voltage and 20 A constant current. The system has the advantages of being small in size, lightweight (290 g) and easy to install, and the receiver device has strong resistance to offset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.