The growing emergence of antibiotic-resistant bacteria in the food industry needs to be controlled with effective antimicrobials. In this study, bacteriocin MN047 A (BMA) was found to have antibacterial activity against multidrug-resistant bacteria. It was produced by Lactobacillus crustorum MN047, which was first isolated from koumiss, a traditional fermented dairy product from Xinjiang Autonomous Region, China. It was purified by ammonium sulfate precipitation, ion-exchange chromatography, and reversed-phase chromatography. It had a low molecular mass of 1,770.89 Da according to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and the sequence was identified as QLPWQILGIVAGMFQA by liquid chromatography-tandem mass spectrometry analysis and MASCOT searching. It was proteinaceous in nature: the bacteriocin was digested by protease but not by α-amylase or lipase. It showed broad pH toleration (pH 2-11), good thermostability, and good storage stability. It had a broad inhibitory spectrum, including both gram-positive and gram-negative bacteria. Growth curve and time-kill kinetics indicated that it was bactericidal to the indicator strains, and this finding was verified by scanning electron microscope and transmission electron microscope after treatment with BMA. As well, BMA halted the growth of Staphylococcus aureus and Escherichia coli in the G1 and G2/M phases according to cell-cycle analysis by flow cytometry, indicating that BMA had comprehensive inhibitory effects against foodborne pathogens.
The multidrug-resistant strains of food spoilage bacteria and foodborne pathogenic bacteria in food are badly in need of being controlled by effective bio-preservatives. In this study, the XN8 strain was isolated from Jiangshui and identified as Lactobacillus coryniformis according to 16S rRNA gene sequence. One of the bacteriocins produced by XN8 was purified by ammonium sulfate precipitation and a series of chromatographic column, and designated as lactocin XN8-A (LXA). The molecular mass of LXA was 3100.0242 Da by MALDI-TOF MS. The LXA showed good heat, pH and storage stabilities. However, it was sensitive to proteases. The LXA was found to have a broad antimicrobial spectrum on both Gram-positive and Gram-negative bacteria including multidrug-resistant strains and Listeria monocytogenes. Its minimum inhibitory concentration (MIC) for both E. coli and S. aureus was 6.85 μg/mL. The LXA had a bactericidal mode without cell lysis by the growth curve and time-kill assay. The results of electron microscope showed that the LXA destroyed membrane permeability and induced pore-formation of target cells. Furthermore, the LXA induced cell cycle arrest at both G1 and G2/M phase by cell cycle analysis. This research suggests that the LXA has promising potential as bio-preservative in food industry.
This study aimed to investigate the effect of Pichia galeiformis on disease resistance and elucidate the changes in phenylpropane biosynthesis treated by P. galeiformis in postharvest citrus. The results showed that P. galeiformis reduced the disease incidence and lesion diameters without direct contact with the pathogen Penicillium digitatum. Transcriptome analysis revealed that phenylpropanoid biosynthesis was triggered by P. galeiformis. Genes encoding phenylpropanoid biosynthesis were upregulated, including phenylalanine ammonia-lyase (PAL), 4-coumaroyl-CoA ligase (4CL), cinnamate-4-hydroxylase (C4H), peroxidase (POD), cinnamyl alcohol dehydrogenase (CAD), O-methyltransferase, and hydroxyl cinnamoyl transferase. Moreover, P. galeiformis increased the activity of PAL, 4CL, C4H, POD, polyphenol oxidase, and CAD in citrus pericarp. In addition, P. galeiformis treated citrus displayed higher levels of total phenolic compounds, flavonoid, and lignin and higher amounts of ferulic and sinapic acid. In conclusion, these results suggested that P. galeiformis could induce resistance through modulating the pathway of phenylpropanoid biosynthesis in postharvest citrus.
Backgroud: The growing emergence of antibiotic-resistant pathogens including the most dangerous superbugs requires quick discovery of novel antibiotics/biopreservatives for human health and food safety. Bacteriocins, a subgroup of antimicrobial peptides, have been considered as promising alternatives to antibiotics. Abundant novel bacteriocins are stored in genome sequences of lactic acid bacteria. However, discovery of novel bacteriocins still mainly relies on dubious traditional purification with low efficiency. Moreover, sequence alignment is invalid for novel bacteriocins which have no homology to known bacteriocins in databases. Therefore, an efficient, simple, universal, and time-saving method was needed to discover novel bacteriocins.Methods and Results: Crude bacteriocins from both cell-related and culture supernatant of Lactobacillus crustorum MN047 fermentation were applied to LC-MS/MS for peptidome assay, by which 131 extracellular peptides or proteins were identified in the complete genome sequence of L. crustorum MN047. Further, the genes of suspected bacteriocins were verified by expressed in Escherichia coli BL21 (DE3) pLysS. Thereafter, eight novel bacteriocins and two nonribosomal antimicrobial peptides were identified to be broad-spectrum activity against both Gram-positive and Gram-negative bacteria, including some multidrug-resistant strains. Among them, BM1556 located within predicted bacteriocin gene cluster. The most active bacteriocin BM1122 had low MIC values of 13.7 mg/L against both Staphylococcus aureus ATCC29213 and E. coli ATCC25922. The BM1122 had bactericidal action mode by biofilm-destruction, pore-formation, and membrane permeability change.Conclusions: The combination of complete genome and peptidome is a valid approach for quick discovery of novel bacteriocins without/with-low homology to known ones. This method will contribute to deep exploitation of novel bacteriocins in genome of bacteria submitted to GenBank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.