Gravitational waves from neutron star–black hole (NSBH) mergers that undergo tidal disruption provide a potential avenue to study the equation of state of neutron stars and hence the behavior of matter at its most extreme densities. We present a phenomenological model for the gravitational-wave signature of tidal disruption, which allows us to measure the disruption time. We carry out a study with mock data, assuming an optimistically nearby NSBH event with parameters tuned for measuring the tidal disruption. We show that a two-detector network of 40 km Cosmic Explorer instruments can measure the time of disruption with a precision of ≈0.5 ms, which corresponds to a constraint on the neutron star radius of ≈0.7 km (90% credibility). This radius constraint is wider than the constraint obtained by measuring the tidal deformability of the neutron star of the same system during the inspiral. Moreover, the neutron star radius is likely to be more tightly constrained using binary neutron star mergers. While NSBH mergers are important for the information they provide about stellar and binary astrophysics, they are unlikely to provide insights into nuclear physics beyond what we will already know from binary neutron star mergers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.