The functioning of the genome is tightly related to its architecture. Therefore, understanding the relationship between different regulatory mechanisms and the organization of chromosomal domains is essential for understanding genome regulation. The majority of imprinted genes are assembled into clusters, share common regulatory elements, and, hence, represent an attractive model for studies of regulation of clusters of non-paralogous genes. Here, we investigated the relationship between genomic imprinting and diurnal regulation of genes from the imprinted domain of mouse chromosome 12. We compared gene expression patterns in C57BL/6 mice and congenic mice that carry the imprinted region from a Mus musculus molossinus strain MOLF/Ei. In the C57BL/6 mice, a putative enhancer/oscillator regulated the expression of only Mico1/Mico1os, whereas in the congenic mice its influence was spread onto Rtl1as, Dio3 and Dio3os, i.e. the distal part of the imprinted domain, resulting in coordinated diurnal variation in expression of five genes. Using additional congenic strains we determined that in C57BL/6 the effect of the putative enhancer/oscillator was attenuated by a linked dominant trans-acting factor located in the distal portion of chromosome 12. Our data demonstrate that (i) in adult organs, mRNA levels of several imprinted genes vary during the day, (ii) genetic variation may remove constraints on the influence of an enhancer and lead to spreading of its effect onto neighboring genes, thereby generating genotype-dependent expression patterns and (iii) different regulatory mechanisms within the same domain act independently and do not seem to interfere with each other.
Transmission ratio distortion (TRD) is a deviation from the expected Mendelian 1:1 ratio of alleles transmitted from parents to offspring and may arise by different mechanisms. Earlier we described a grandparental-origin-dependent sex-of-offspring-specific TRD of maternal chromosome 12 alleles closely linked to an imprinted region and hypothesized that it resulted from imprint resetting errors in the maternal germline. Here, we report that the genotype of the parents for loss-of-function mutations in the Dnmt1 gene influences the transmission of grandparental chromosome 12 alleles. More specifically, maternal Dnmt1 mutations restore Mendelian transmission ratios of chromosome 12 alleles. Transmission of maternal alleles depends upon the presence of the Dnmt1 mutation in the mother rather than upon the Dnmt1 genotype of the offspring. Paternal transmission mirrors the maternal one: live-born offspring of wild-type fathers display 1:1 transmission ratios, whereas offspring of heterozygous Dnmt1 mutant fathers tend to inherit grandpaternal alleles. Analysis of allelic transmission in the homologous region of human chromosome 14q32 detected preferential transmission of alleles from the paternal grandfather to grandsons. Thus, parental Dnmt1 is a modifier of transmission of alleles at an unlinked chromosomal region and perhaps has a role in the genesis of TRD.
Rapid emergence of SARS-CoV-2 variants is a constant threat and a major hurdle to reach heard immunity. We produced VBI-2905a, an enveloped virus-like particules (eVLP)-based vaccine candidate expressing prefusion spike protein from the Beta variant that contains several escape mutation. VBI-2905a protected hamsters against infection with a Beta variant virus and induced high levels of neutralizing antibodies against Beta RBD. In a heterologous vaccination regimen, a single injection of VBI-2905a in animals previously immunized with VBI-2902, a vaccine candidate expressing S from ancestral SARS-CoV-2, hamsters were equally protected against Beta variant infection. As an alternate strategy to broaden immunity, we produced a trivalent vaccine expressing the prefusion spike protein from SARS-CoV-2 together with unmodifed S from SARS-CoV-1 and MERS-CoV. Relative to immunity induced against the ancestral strain, the trivalent vaccine VBI-2901a induced higher and more consistent antibody binding and neutralizing responses against a panel of variants including Beta, Delta, Kappa, and Lambda, with evidence for broadening of immunity rather than just boosting cross-reactivity antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.