The convolutional neural network (CNN) is the most widely used machine learning technique within the fields of image and video processing. It is primarily used to categorize images using vast datasets. This require a lot of calculations. The effectiveness of a field-programmable gate array (FPGA) as a hardware accelerator for CNNs will give excellent performance at low power budgets. The employment of the Winograd algorithm can reduce the number of processing stages in CNN. 2-D convolution is employed for the bulk of calculations in CNNs. The tactic for computing convolution for smaller filter sizes that uses Winograd minimum filtering is the handiest. The comparison of computation complexity for multiplications will be performed using Matlab. The architecture of the Winograd-based processing element, RTL coding in Verilog HDL, and the test bench are designed to examine the performance. The Xilinx Vivado / Cadence tool will be used to implement the processing element in the convolution unit on an FPGA or ASIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.