BackgroundTargeting cancer stem cells is critical for suppressing cancer progression and recurrence. Finding novel markers or related pathways could help eradicate or diagnose cancer in clinic.MethodsBy constructing STARD13-correlated ceRNA 3′UTR stable overexpression or knockdown breast cancer cells, we aimed to explore the effects of STARD13-correlated ceRNA network on breast cancer stemness in vitro and in vivo. Further RNA-sequencing was used to analyze transcriptome change in combination with functional studies on candidate signaling. Clinical samples obtained from The Cancer Genome Atlas data were used to validate the correlation between STARD13 and related pathways. Finally, in vitro and in vivo experiments were used to examine the effects of STARD13-correlated ceRNA network on chemotherapy sensitivity/resistance.ResultsHere, we revealed that this ceRNA network inhibited stemness of breast cancer. Mechanistically, we found that activation of STARD13-correlated ceRNA network was negatively correlated with YAP/TAZ activity in breast cancer. Specifically, this ceRNA network attenuated YAP/TAZ nuclear accumulation and transcriptional activity via collectively modulating Hippo and Rho-GTPase/F-actin signaling. Finally, we demonstrated that YAP/TAZ transcriptional activity regulated by this ceRNA network was involved in chemoresistance.ConclusionsOur results uncover a novel mechanism of YAP/TAZ activation in breast cancer and propose the possibility to drive STARD13-correlated ceRNA network to inhibit breast cancer stem cell traits.Electronic supplementary materialThe online version of this article (10.1186/s13045-018-0613-5) contains supplementary material, which is available to authorized users.
Background Breast cancer stem cells have self-renewal capability and are resistant to conventional chemotherapy. PD-L1 could promote the expression of stemness markers (OCT4 and Nanog) in breast cancer stem cells. However, the mechanisms by which PD-L1 regulates the stemness of breast cancer cells and PD-L1 is regulated in breast cancer cells are still unclear. Methods Lentivirus infection was used to construct stable cell lines. The correlation between PD-L1 and stemness markers expression was evaluated in clinical samples. Additionally, luciferase reporter assay combined with RNA-Fluorescence in situ hybridization (RNA-FISH) and RNA-binding protein immunoprecipitation (RIP) assays were used to verify the direct binding of miR-873 on PD-L1. Furthermore, flow cytometry, mammosphere formation combined with nude mouse tumor xenograft model were carried out to examine the effects of miR-873/PD-L1 axis on the stemness of breast cancer cells. Finally, MTT assay was performed to determine the effects of miR-873/PD-L1 axis on drug resistance. Findings PD-L1 expression was positively correlated with the expression of stemness markers, and overexpression of PD-L1 contributed to chemoresistance and stemness-like properties in breast cancer cells via activating PI3K/Akt and ERK1/2 pathways. Mechanistically, miR-873 inhibited PD-L1 expression through directly binding to its 3′-untranslated region (UTR), and miR-873 attenuated the stemness and chemoresistance of breast cancer cells which was dependent on PD-L1 and the downstream PI3K/Akt and ERK1/2 signaling. Notably, the promotion of PD-L1 on the stemness and chemoresistance was enhanced by recombinant PD-1 (rPD-1), this effect was attenuated by PD-1/PD-L1 inhibitor. Interpretation miR-873/PD-L1 regulatory axis might serve as a therapeutic target to enhance the chemo-sensitivity and eliminate the stemness of breast cancer cells. Fund This work was supported by the National Nature Science Foundation of China, No. 81702957, China Postdoctoral Science Foundation, No. 2017M620230, the Postdoctoral Research Funding Scheme of Jiangsu Province (2017), No. 1701197B, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.
Background The expression of CYP4Z1 and the pseudogene CYP4Z2P has been shown to be specifically increased in breast cancer by our group and others. Additionally, we previously revealed the roles of the competitive endogenous RNA (ceRNA) network mediated by these genes (ceRNET_CC) in breast cancer angiogenesis, apoptosis, and tamoxifen resistance. However, the roles of ceRNET_CC in regulating the stemness of breast cancer cells and the mechanisms through which ceRNET_CC is regulated remain unclear. Methods Transcriptional factor six2, CYP4Z1-3′UTR, and CYP4Z2P-3′UTR were stably overexpressed or knocked down in breast cancer cells via lentivirus infection. ChIP-sequencing and RNA-sequencing analysis were performed to reveal the mechanism through which ceRNET_CC is regulated and the transcriptome change mediated by ceRNET_CC. Clinical samples were used to validate the correlation between six2 and ceRNET_CC. Finally, the effects of the six2/ceRNET_CC axis on the stemness of breast cancer cells and chemotherapy sensitivity were evaluated by in vitro and in vivo experiments. Results We revealed that ceRNET_CC promoted the stemness of breast cancer cells. Mechanistically, six2 activated ceRNET_CC by directly binding to their promoters, thus activating the downstream PI3K/Akt and ERK1/2 pathways. Finally, we demonstrated that the six2/ceRNET_CC axis was involved in chemoresistance. Conclusions Our results uncover the mechanism through which ceRNET_CC is regulated, identify novel roles for the six2/ceRNET_CC axis in regulating the stemness of breast cancer cells, and propose the possibility of targeting the six2/ceRNET_CC axis to inhibit breast cancer stem cell (CSC) traits. Electronic supplementary material The online version of this article (10.1186/s13045-019-0697-6) contains supplementary material, which is available to authorized users.
Transcription factor Yin Yang 1 (YY1) is upregulated in multiple tumors and plays essential roles in tumor proliferation and metastasis. However, the function of YY1 in breast cancer stemness remains unclear. Herein, we found that YY1 expression was negatively correlated with the overall survival and relapse-free survival of breast cancer patients and positively correlated with the expression of stemness markers in breast cancer. Overexpression of YY1 increased the expression of stemness markers, elevated CD44 + CD24 − cell sub-population, and enhanced the capacity of cell spheroid formation and tumor-initiation. In contrast, YY1 knockdown exhibited the opposite effects. Mechanistically, YY1 decreased microRNA-873-5p (miR-873-5p) level by recruiting histone deacetylase 4 (HDAC4) and HDAC9 to miR-873-5p promoter and thus increasing the deacetylation level of miR-873-5p promoter. Sequentially, YY1 activated the downstream PI3K/AKT and ERK1/2 pathways, which have been confirmed to be suppressed by miR-873-5p in our recent work. Moreover, the suppressed effect of YY1/miR-873-5p axis on the stemness of breast cancer cells was partially dependent on PI3K/AKT and ERK1/2 pathways. Finally, it was found that the YY1/miR-873-5p axis is involved in the chemoresistance of breast cancer cells. Our study defines a novel YY1/miR-873-5p axis responsible for the stemness of breast cancer cells.
RNA binding proteins (RBPs) are pivotal post-transcriptional regulators. RNPC1, an RBP, acts as a tumor suppressor through binding and regulating the expression of target genes in cancer cells. This study disclosed that RNPC1 expression was positively correlated with breast cancer patients' relapse-free and overall survival and that RNPC1 suppressed breast cancer cell metastasis. Mechanistically, RNPC1 promotes competing endogenous RNA (ceRNA) network crosstalk among STARD13, CDH5, HOXD10, and HOXD1 (STARD13-correlated ceRNA network), which we previously confirmed in breast cancer cells through stabilizing the transcripts and thus facilitating the expression of these four genes in breast cancer cells. Furthermore, RNPC1 overexpression restrained the promotion of STARD13, CDH5, HOXD10, and HOXD1 knockdown on cell metastasis. Notably, RNPC1 expression was positively correlated with CDH5, HOXD1, and HOXD10 expression in breast cancer tissues and attenuated adriamycin resistance. Taken together, these results identified that RNPC1 could inhibit breast cancer cell metastasis via promoting a STARD13-correlated ceRNA network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.