Hierarchical SnO2@rGO nanostructures with superhigh surface areas are synthesized via a simple redox reaction between Sn(2+) ions and graphene oxide (GO) nanosheets under microwave irradiation. XRD, SEM, TEM, XPS, TG-DTA and N2 adsorption-desorption are used to characterize the compositions and microstructures of the SnO2@rGO samples obtained. The SnO2@rGO nanostructures are used as gas-sensing and electroactive materials to evaluate their property-microstructure relationship. The results show that SnO2 nanoparticles (NPs) with particle sizes of 3-5 nm are uniformly anchored on the surfaces of reduced graphene oxide (rGO) nanosheets through a heteronucleation and growth process. The as-obtained SnO2@rGO sample with a hierarchically sesame cake-like microstructure and a superhigh specific surface area of 2110.9 m(2) g(-1) consists of 92 mass% SnO2 NPs and ∼8 mass% rGO nanosheets. The sensitivity of the SnO2@rGO sensor upon exposure to 10 ppm H2S is up to 78 at the optimal operating temperature of 100 °C, and its response time is as short as 7 s. Compared with SnO2 nanocrystals (5-10 nm), the hierarchical SnO2@rGO nanostructures have enhanced gas-sensing behaviors (i.e., high sensitivity, rapid response and good selectivity). The SnO2@rGO nanostructures also show excellent electroactivity in detecting sunset yellow (SY) in 0.1 M phosphate buffer solution (pH = 2.0). The enhancement in gas-sensing and electroactive performance is mainly attributed to the unique hierarchical microstructure, high surface areas and the synergistic effect of SnO2 NPs and rGO nanosheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.