Sensing platforms are becoming batteryless to enable the vision of the Internet of Things, where trillions of devices collect data, interact with each other, and interact with people. However, these batteryless sensing platforms—that rely purely on energy harvesting—are rarely able to maintain a sense of time after a power failure. This makes working with sensor data that is time sensitive especially difficult. We propose two novel, zero-power timekeepers that use remanence decay to measure the time elapsed between power failures. Our approaches compute the elapsed time from the amount of decay of a capacitive device, either on-chip Static Random-Access Memory (SRAM) or a dedicated capacitor. This enables hourglass-like timers that give intermittently powered sensing devices a persistent sense of time. Our evaluation shows that applications using either timekeeper can keep time accurately through power failures as long as 45s with low overhead.
Harvesting energy from the environment makes it possible to deploy tiny sensors for long periods of time, with little or no required maintenance; however, this free energy makes testing and experimentation difficult. Environmental energy sources vary widely and are often difficult both to predict and to reproduce in the lab during testing. These variations are also behavior dependent—a factor that leaves application engineers unable to make even simple comparisons between algorithms or hardware configurations, using traditional testing approaches. In this article, we describe the design and evaluation of Ekho, an emulator capable of recording energy harvesting conditions and accurately recreating those conditions in the lab. This makes it possible to conduct realistic and repeatable experiments involving energy harvesting devices. Ekho is a general-purpose, mobile tool that supports a wide range of harvesting technologies. We demonstrate, using a working prototype, that Ekho is capable of reproducing solar, Radio Frequency (RF), and kinetic energy harvesting environments accurately and consistently. Our results show that Ekho can recreate harvesting-dependent program behaviors by emulating energy harvesting conditions accurately to within 77.4μA for solar and 15.0μA for kinetic environments, and can emulate RF energy harvesting conditions consistently.
Abstract-This paper introduces ER-MAC, a hybrid MAC protocol for emergency response wireless sensor networks. ER-MAC is designed as a hybrid of the TDMA and CSMA approaches, giving it the flexibility to adapt to traffic and topology changes. It adopts a TDMA approach to schedule collision-free slots. Nodes wake up for their scheduled slots, but otherwise switch into power-saving sleep mode. When an emergency occurs, nodes that participate in the emergency monitoring change their MAC behaviour by allowing contention in TDMA slots to achieve high delivery ratio and low latency. ER-MAC offers a synchronised and loose slot structure to allow nodes to join or leave the network. Simulations in ns-2 show that ER-MAC outperforms Z-MAC with higher delivery ratio, lower latency, and lower energy consumption.Keywords-MAC protocol; wireless sensor networks; fire emergency. I. INTRODUCTIONWireless sensor networks (WSNs) for emergency applications such as monitoring fires in buildings must be traffic and topology adaptive. In our specified application, the communication protocol can be delay tolerant during normal monitoring and designed for energy efficiency. However, when an emergency event occurs, energy efficiency is less important than high packet delivery ratio and low latency, and the communication protocol should adapt in response.Some traffic adaptive medium access control ( In this paper, we propose ER-MAC, a hybrid MAC protocol for emergency response WSNs. While our scenario assumption is the fire monitoring in buildings, this protocol is also useful in a range of WSN emergency applications. The contributions of this paper are:
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.