As a new way of training generative models, Generative Adversarial Net (GAN) that uses a discriminative model to guide the training of the generative model has enjoyed considerable success in generating real-valued data. However, it has limitations when the goal is for generating sequences of discrete tokens. A major reason lies in that the discrete outputs from the generative model make it difficult to pass the gradient update from the discriminative model to the generative model. Also, the discriminative model can only assess a complete sequence, while for a partially generated sequence, it is non-trivial to balance its current score and the future one once the entire sequence has been generated. In this paper, we propose a sequence generation framework, called SeqGAN, to solve the problems. Modeling the data generator as a stochastic policy in reinforcement learning (RL), SeqGAN bypasses the generator differentiation problem by directly performing gradient policy update. The RL reward signal comes from the GAN discriminator judged on a complete sequence, and is passed back to the intermediate state-action steps using Monte Carlo search. Extensive experiments on synthetic data and real-world tasks demonstrate significant improvements over strong baselines.
Predicting molecular conformations from molecular graphs is a fundamental problem in cheminformatics and drug discovery. Recently, significant progress has been achieved with machine learning approaches, especially with deep generative models. Inspired by the diffusion process in classical non-equilibrium thermodynamics where heated particles will diffuse from original states to a noise distribution, in this paper, we propose a novel generative model named GEODIFF for molecular conformation prediction. GEODIFF treats each atom as a particle and learns to directly reverse the diffusion process (i.e., transforming from a noise distribution to stable conformations) as a Markov chain. Modeling such a generation process is however very challenging as the likelihood of conformations should be rototranslational invariant. We theoretically show that Markov chains evolving with equivariant Markov kernels can induce an invariant distribution by design, and further propose building blocks for the Markov kernels to preserve the desirable equivariance property. The whole framework can be efficiently trained in an end-toend fashion by optimizing a weighted variational lower bound to the (conditional) likelihood. Experiments on multiple benchmarks show that GEODIFF is superior or comparable to existing state-of-the-art approaches, especially on large molecules. 1
As aggregators, online news portals face great challenges in continuously selecting a pool of candidate articles to be shown to their users. Typically, those candidate articles are recommended manually by platform editors from a much larger pool of articles aggregated from multiple sources. Such a hand-pick process is labor intensive and time-consuming. In this paper, we study the editor article selection behavior and propose a learning by demonstration system to automatically select a subset of articles from the large pool. Our data analysis shows that (i) editors' selection criteria are non-explicit, which are less based only on the keywords or topics, but more depend on the quality and a ractiveness of the writing from the candidate article, which is hard to capture based on traditional bag-of-words article representation. And (ii) editors' article selection behaviors are dynamic: articles with di erent data distribution come into the pool everyday and the editors' preference varies, which are driven by some underlying periodic or occasional pa erns. To address such problems, we propose a meta-a ention model across multiple deep neural nets to (i) automatically catch the editors' underlying selection criteria via the automatic representation learning of each article and its interaction with the meta data and (ii) adaptively capture the change of such criteria via a hybrid a ention model. e a ention model strategically incorporates multiple prediction models, which are trained in previous days. e system has been deployed in a commercial article feed platform. A 9-day A/B testing has demonstrated the consistent superiority of our proposed model over several strong baselines.
As a new way of training generative models, Generative Adversarial Net (GAN) that uses a discriminative model to guide the training of the generative model has enjoyed considerable success in generating real-valued data. However, it has limitations when the goal is for generating sequences of discrete tokens. A major reason lies in that the discrete outputs from the generative model make it difficult to pass the gradient update from the discriminative model to the generative model. Also, the discriminative model can only assess a complete sequence, while for a partially generated sequence, it is nontrivial to balance its current score and the future one once the entire sequence has been generated. In this paper, we propose a sequence generation framework, called SeqGAN, to solve the problems. Modeling the data generator as a stochastic policy in reinforcement learning (RL), SeqGAN bypasses the generator differentiation problem by directly performing gradient policy update. The RL reward signal comes from the GAN discriminator judged on a complete sequence, and is passed back to the intermediate state-action steps using Monte Carlo search. Extensive experiments on synthetic data and real-world tasks demonstrate significant improvements over strong baselines.
Green Security Games (GSGs) have been proposed and applied to optimize patrols conducted by law enforcement agencies in green security domains such as combating poaching, illegal logging and overfishing. However, real-time information such as footprints and agents' subsequent actions upon receiving the information, e.g., rangers following the footprints to chase the poacher, have been neglected in previous work. To fill the gap, we first propose a new game model GSG-I which augments GSGs with sequential movement and the vital element of real-time information. Second, we design a novel deep reinforcement learning-based algorithm, DeDOL, to compute a patrolling strategy that adapts to the real-time information against a best-responding attacker. DeDOL is built upon the double oracle framework and the policy-space response oracle, solving a restricted game and iteratively adding best response strategies to it through training deep Q-networks. Exploring the game structure, DeDOL uses domain-specific heuristic strategies as initial strategies and constructs several local modes for efficient and parallelized training. To our knowledge, this is the first attempt to use Deep Q-Learning for security games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.