Most of the pronunciation assessment methods are based on local features derived from automatic speech recognition (ASR), e.g., the Goodness of Pronunciation (GOP) score. In this paper, we investigate an ASR-free scoring approach that is derived from the marginal distribution of raw speech signals. The hypothesis is that even if we have no knowledge of the language (so cannot recognize the phones/words), we can still tell how good a pronunciation is, by comparatively listening to some speech data from the target language. Our analysis shows that this new scoring approach provides an interesting correction for the phone-competition problem of GOP. Experimental results on the ERJ dataset demonstrated that combining the ASR-free score and GOP can achieve better performance than the GOP baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.