The increasing incidence of hepatocellular carcinoma (HCC) is of great concern not only in the United States but throughout the world. Although sorafenib, a multikinase inhibitor with antiangiogenic and antiproliferative effects, currently sets the new standard for advanced HCC, tumor response rates are usually quite low. An understanding of the underlying mechanisms for sorafenib resistance is critical if outcomes are to be improved. In this study we tested the hypothesis that hypoxia caused by the antiangiogenic effects of sustained sorafenib therapy could induce sorafenib resistance as a cytoprotective adaptive response, thereby limiting sorafenib efficiency. We found that HCCs, clinically resistant to sorafenib, exhibit increased intratumor hypoxia compared with HCCs before treatment or HCCs sensitive to sorafenib. Hypoxia protected HCC cells against sorafenib and hypoxia-inducible factor 1 (HIF-1a) was required for the process. HCC cells acquired increased P-gp expression, enhanced glycolytic metabolism, and increased nuclear factor kappa B (NF-jB) activity under hypoxia. EF24, a molecule having structural similarity to curcumin, could synergistically enhance the antitumor effects of sorafenib and overcome sorafenib resistance through inhibiting HIF-1a by sequestering it in cytoplasm and promoting degradation by way of up-regulating Von Hippel-Lindau tumor suppressor (VHL). Furthermore, we found that sustained sorafenib therapy led to increased intratumor hypoxia, which was associated with sorafenib sensitivity in HCC subcutaneous mice tumor models. The combination of EF24 and sorafenib showed synergistically effects against metastasis both in vivo and in vitro. Synergistic tumor growth inhibition effects were also observed in subcutaneous and orthotopic hepatic tumors. Conclusion: Hypoxia induced by sustained sorafenib treatment confers sorafenib resistance to HCC through HIF-1a and NF-jB activation. EF24 overcomes sorafenib resistance through VHL-dependent HIF-1a degradation and NF-jB inactivation. EF24 in combination with sorafenib represents a promising strategy for HCC.
The synthetic compound 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) is a potent analog of curcumin that exhibits enhanced biological activity and bioavailability without increasing toxicity. EF24 exerts antitumor activity by arresting the cell cycle and inducing apoptosis, suppressing many types of cancer cells in vitro. The antiproliferative and antiangiogenic properties of EF24 provide theoretical support for its development and application to liver cancers. We investigated the in vitro and in vivo activities of EF24 on liver cancer to better understand its therapeutic effects and mechanisms. EF24 induced significant apoptosis and G2/M-phase cell cycle arrest in mouse liver cancer cell lines, Hepa1-6 and H22. The expression levels of G2/M cell cycle regulating factors, cyclin B1 and Cdc2, were significantly decreased, pp53, p53, and p21 were significantly increased in EF24-treated cells. In addition, EF24 treatment significantly reduced Bcl-2 concomitant with an increase in Bax, enhanced the release of cytochrome c from the mitochondria into the cytosol, resulting in an upregulation of cleaved-caspase-3, which promoted poly (ADP-ribose) polymerase cleavage. EF24-treated cells also displayed decreases in phosphorylated Akt, phosphorylated extracellular signal-regulated kinase and vascular endothelial growth factor. Our in vitro protein expression data were confirmed in vivo using a subcutaneous hepatocellular carcinoma (HCC) tumor model. This mouse HCC model confirmed that total body weight was unchanged following EF24 treatment, although tumor weight was significantly decreased. Using an orthotopic HCC model, EF24 significantly reduced the liver/body weight ratio and relative tumor areas compared to the control group. In situ detection of apoptotic cells and quantification of Ki-67, a biomarker of cell proliferation, all indicated significant tumor suppression with EF24 treatment. These results suggest that EF24 exhibits anti-tumor activity on liver cancer cells via mitochondria-dependent apoptosis and inducing cell cycle arrest coupled with antiangiogenesis. The demonstrated activities of EF24 support its further evaluation as a treatment for human liver cancers.
Background and AimsImmunotherapy with PD-1 inhibitors combined with tyrosine kinase inhibitors (TKIs) has been proven to be effective against advanced hepatocellular carcinoma (HCC). The aim of this study was to identify the feasibility and safety of subsequent salvage surgery after this combination therapy.Methods and PatientsA retrospective analysis was performed on patients with primary HCC with major vascular invasion between 2018 and 2019. All cases were treated with a combination of a PD-1 inhibitor and TKI agents and subsequent surgery.ResultsA total of 10 HCC cases with major vascular invasion met the successful conversion criteria after the combination therapy, and eight patients underwent subsequent salvage surgery after both radiology and 3D quantitative oncological assessment. Partial response (PR) was recorded in 7 of 10 patients and complete response (CR) in 3 of 10 patients before salvage surgery. Salvage surgery included right hepatectomy, left hepatectomy, and anatomic segmental hepatectomy. The mean intraoperative blood loss was 1,650 ml (50–3,000 ml). No complications beyond Clavien–Dindo level III or postoperative mortality were observed. The viable tumor cell rate of the PR cases (modified response evaluation criteria in solid tumors, mRECIST) varied from 1.5% to 100%, and only one patient had pathology-proven pathological complete response (pCR). The postoperative median follow-up time was 19.7 months (9.1–24.9 months). The 12-month recurrence-free survival rate of all cases who underwent salvage surgery was 75%.ConclusionSalvage surgery was effective and safe after conversion therapy with PD-1 inhibitors plus TKIs and may increase the long-term oncological benefit for patients with unresectable HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.