Controllable doping of two-dimensional materials is highly desired for ideal device performance in both hetero- and p-n homojunctions. Herein, we propose an effective strategy for doping of MoS2 with nitrogen through a remote N2 plasma surface treatment. By monitoring the surface chemistry of MoS2 upon N2 plasma exposure using in situ X-ray photoelectron spectroscopy, we identified the presence of covalently bonded nitrogen in MoS2, where substitution of the chalcogen sulfur by nitrogen is determined as the doping mechanism. Furthermore, the electrical characterization demonstrates that p-type doping of MoS2 is achieved by nitrogen doping, which is in agreement with theoretical predictions. Notably, we found that the presence of nitrogen can induce compressive strain in the MoS2 structure, which represents the first evidence of strain induced by substitutional doping in a transition metal dichalcogenide material. Finally, our first principle calculations support the experimental demonstration of such strain, and a correlation between nitrogen doping concentration and compressive strain in MoS2 is elucidated.
The understanding of the metal and transition metal dichalcogenide (TMD) interface is critical for future electronic device technologies based on this new class of two-dimensional semiconductors. Here, we investigate the initial growth of nanometer-thick Pd, Au, and Ag films on monolayer MoS2. Distinct growth morphologies are identified by atomic force microscopy: Pd forms a uniform contact, Au clusters into nanostructures, and Ag forms randomly distributed islands on MoS2. The formation of these different interfaces is elucidated by large-scale spin-polarized density functional theory calculations. Using Raman spectroscopy, we find that the interface homogeneity shows characteristic Raman shifts in E2g(1) and A1g modes. Interestingly, we show that insertion of graphene between metal and MoS2 can effectively decouple MoS2 from the perturbations imparted by metal contacts (e.g., strain), while maintaining an effective electronic coupling between metal contact and MoS2, suggesting that graphene can act as a conductive buffer layer in TMD electronics.
In this work, we demonstrate the growth of HfSe2 thin films using molecular beam epitaxy. The relaxed growth criteria have allowed us to demonstrate layered, crystalline growth without misfit dislocations on other 2D substrates such as highly ordered pyrolytic graphite and MoS2. The HfSe2 thin films exhibit an atomically sharp interface with the substrates used, followed by flat, 2D layers with octahedral (1T) coordination. The resulting HfSe2 is slightly n-type with an indirect band gap of ∼ 1.1 eV and a measured energy band alignment significantly different from recent DFT calculations. These results demonstrate the feasibility and significant potential of fabricating 2D material based heterostructures with tunable band alignments for a variety of nanoelectronic and optoelectronic applications.
Exfoliated molybdenum disulfide (MoS2) is shown to chemically oxidize in a layered manner upon exposure to a remote O2 plasma. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and atomic force microscopy (AFM) are employed to characterize the surface chemistry, structure, and topography of the oxidation process and indicate that the oxidation mainly occurs on the topmost layer without altering the chemical composition of underlying layer. The formation of S-O bonds upon short, remote plasma exposure pins the surface Fermi level to the conduction band edge, while the MoOx formation at high temperature modulates the Fermi level toward the valence band through band alignment. A uniform coverage of monolayer amorphous MoO3 is obtained after 5 min or longer remote O2 plasma exposure at 200 °C, and the MoO3 can be completely removed by annealing at 500 °C, leaving a clean ordered MoS2 lattice structure as verified by XPS, LEED, AFM, and scanning tunneling microscopy. This work shows that a remote O2 plasma can be useful for both surface functionalization and a controlled thinning method for MoS2 device fabrication processes.
Understanding the structural stability of transition-metal dichalcogenides is necessary to avoid surface/interface degradation. In this work, the structural stability of 2H-MoTe with thermal treatments up to 500 °C is studied using scanning tunneling microscopy and scanning transmission electron microscopy. On the exfoliated sample surface at room temperature, atomic subsurface donors originating from excess Te atoms are observed and presented as nanometer-sized, electronically-induced protrusions superimposed with the hexagonal lattice structure of MoTe. Under a thermal treatment as low as 200 °C, the surface decomposition-induced cluster defects and Te vacancies are readily detected and increase in extent with the increasing temperature. Driven by Te vacancies and thermal energy, intense 60° inversion domain boundaries form resulting in a "wagon wheel" morphology after 400 °C annealing for 15 min. Scanning tunneling spectroscopy identified the electronic states at the domain boundaries and the domain centers. To prevent extensive Te loss at higher temperatures, where MoTe nanowire formation and substantial desorption-induced etching effects will take place simultaneously, surface and edge passivation with a monolayer graphene coverage on MoTe is tested. With this passivation strategy, the structural stability of MoTe is greatly enhanced up to 500 °C without apparent structural defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.