The paper investigated numerically the heat transfer and pressure loss characteristics of the converging matrix cooling channels for turbine trailing edges with response surface method. The three selected design factors are scale factor ( SF), rib inclination angle ( α) and channel wedge angle ( β). The discussed range for the design factors, SF, α and β, are 2.5–10; 30°–60° and 1.5°–2.5°. And the investigated Reynolds number range is from 15,000 to 40,000. The turbulence model selected was SST k- ω model. It is newly found that the heat transfer and pressure loss characteristics of the converging matrix cooling channels depend heavily on the scaling effect. The matrix cooling channels with larger scale factor generally present higher heat transfer enhancement, higher pressure loss and lower overall thermal performance. In addition, the converging matrix cooling channels with smaller rib inclination angle and larger channel wedge angle present higher heat transfer enhancement and larger pressure loss. Among all the 13 cases, Case 9 with SF = 2.5, α = 45° and β = 1.5° has the highest averaged thermal performance factor under 6 Reynolds numbers.
The aerodynamic noise of air intake system is one of the main noise sources of a gas turbine power plant. In this study, large eddy simulation in conjunction with acoustic finite element method were used to simulate the flow field and acoustic field of the air intake system of marine gas turbine. Based on the acoustic analogy methods, the internal sound source distributions and inlet radiated noise characteristics of the air intake system under different working conditions and wind speeds were analyzed. The simulated flow fields show that the highest vorticity magnitude occurs around the output shaft as the flow largely separates when passing through. The total pressure loss across the intake system increases with the increasing of the air mass flow rate and the ambient wind speed. The acoustical results show that the low frequency noise of the intake system is more prominent than the high frequency noise. The far field sound pressure level increases quadratically with the intake mass flow rates. The introduction of the ambient wind speed at the inlet boundaries reduces the high frequency aerodynamic noise of the intake system, but the overall sound pressure level of the aerodynamic noise increases with the wind speeds.
The paper conducts numerical investigation coupled with Reynolds-averaged Navier Stokes method on detailed flow field and heat transfer characteristics of ribbed channel with symmetric ribs mounted on two walls. The physical domain is modeled by reference to a practical turbine blade internal cooling channel. The effects of three selected geometric factors of ribs, i.e. rib inclination angle, dimensionless rib height and dimensionless rib pitch, on the flow and heat transfer are investigated by variable-controlled simulations with the Reynolds number ranges from 5,000 to 90,000. The parameter ranges are 30°≤a≤90°, 0.5≤e/w≤1.5 and 5≤P/w≤15 with the rib width w fixed at 1mm. It is newly found that the friction factor does not follow a monotonical trend with respect to the Reynolds number under certain rib configurations. In addition, three-level numerical calculations about three geometric factors as well as the Reynolds number are conducted with the response surface method (RSM). Quadratic regression model for the targeted response, TPF, is obtained. The optimal rib shape for the goal of maximizing the channel overall thermal performance turns out to be e/w=0.5, P/w=15, a=30° as Re is fixed at 30,000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.