Neither the mechanisms that govern lip morphogenesis nor the cause of cleft lip are well understood. We report that genetic inactivation of Lrp6, a co-receptor of the Wnt/β-catenin signaling pathway, leads to cleft lip with cleft palate. The activity of a Wnt signaling reporter is blocked in the orofacial primordia by Lrp6 deletion in mice. The morphological dynamic that is required for normal lip formation and fusion is disrupted in these mutants. The expression of the homeobox genes Msx1 and Msx2 is dramatically reduced in the mutants, which prevents the outgrowth of orofacial primordia, especially in the fusion site. We further demonstrate that Msx1 and Msx2 (but not their potential regulator Bmp4) are the downstream targets of the Wnt/β-catenin signaling pathway during lip formation and fusion. By contrast, a `fusion-resistant'gene, Raldh3 (also known as Aldh1a3), that encodes a retinoic acid-synthesizing enzyme is ectopically expressed in the upper lip primordia of Lrp6-deficient embryos, indicating a region-specific role of the Wnt/β-catenin signaling pathway in repressing retinoic acid signaling. Thus, the Lrp6-mediated Wnt signaling pathway is required for lip development by orchestrating two distinctively different morphogenetic movements.
In the CNS, myelination and remyelination depend on the successful progression and maturation of oligodendroglial lineage cells, including proliferation and differentiation of oligodendroglial progenitor cells (OPCs). Previous studies have reported that Sox2 transiently regulates oligodendrocyte (OL) differentiation in the embryonic and perinatal spinal cord and appears dispensable for myelination in the postnatal spinal cord. However, the role of Sox2 in OL development in the brain has yet to be defined. We now report that Sox2 is an essential positive regulator of developmental myelination in the postnatal murine brain of both sexes. Stage-specific paradigms of genetic disruption demonstrated that Sox2 regulated brain myelination by coordinating upstream OPC population supply and downstream OL differentiation. Transcriptomic analyses further supported a crucial role of Sox2 in brain developmental myelination. Consistently, oligodendroglial Sox2-deficient mice developed severe tremors and ataxia, typical phenotypes indicative of hypomyelination, and displayed severe impairment of motor function and prominent deficits of brain OL differentiation and myelination persisting into the later CNS developmental stages. We also found that Sox2 was required for efficient OPC proliferation and expansion and OL regeneration during remyelination in the adult brain and spinal cord. Together, our genetic evidence reveals an essential role of Sox2 in brain myelination and CNS remyelination, and suggests that manipulation of Sox2 and/or Sox2-mediated downstream pathways may be therapeutic in promoting CNS myelin repair. Promoting myelin formation and repair has translational significance in treating myelin-related neurological disorders, such as periventricular leukomalacia and multiple sclerosis in which brain developmental myelin formation and myelin repair are severely affected, respectively. In this report, analyses of a series of genetic conditional knock-out systems targeting different oligodendrocyte stages reveal a previously unappreciated role of Sox2 in coordinating upstream proliferation and downstream differentiation of oligodendroglial lineage cells in the mouse brain during developmental myelination and CNS remyelination. Our study points to the potential of manipulating Sox2 and its downstream pathways to promote oligodendrocyte regeneration and CNS myelin repair.
The canonical Wnt/β-catenin signaling pathway has implications in early facial development; yet, its function and signaling mechanism remain poorly understood. We report here that the frontonasal and upper jaw primordia cannot be formed after conditional ablation of β-catenin with Foxg1-Cre mice in the facial ectoderm and the adjacent telencephalic neuroepithelium. Gene expression of several cell-survival and patterning factors, including Fgf8, Fgf3, and Fgf17, is dramatically diminished in the anterior neural ridge (ANR, a rostral signaling center) and/or the adjacent frontonasal ectoderm of the β-catenin conditional mutant mice. In addition, Shh expression is diminished in the ventral telencephalon of the mutants, while Tcfap2a expression is less affected in the facial primordia. Apoptosis occurs robustly in the rostral head tissues following inactivation of Fgf signaling in the conditional mutants. Consequently, the upper jaw, nasal, ocular and telencephalic structures are absent, but the tongue and mandible are relatively developed in the conditional mutants at birth. Using molecular biological approaches, we demonstrate that the Fgf8 gene is transcriptionally targeted by Wnt/β-catenin signaling during early facial and forebrain development. Furthermore, we show that conditional gain-of-function of β-catenin signaling causes drastic upregulation of Fgf8 mRNA in the ANR and the entire facial ectoderm, which also arrests facial and forebrain development. Taken together, our results suggest that canonical Wnt/β-catenin signaling is required for early development of the mammalian face and related head structures, which mainly or partly acts through the initiation and modulation of balanced Fgf signaling activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.