BackgroundSeveral studies have demonstrated that repetitive transcranial magnetic stimulation (rTMS) may have a beneficial effect in Alzheimer’s disease (AD). Nevertheless, the clinical benefit of rTMS for AD remains inconclusive.ObjectiveThis systematic review and meta-analysis aimed to evaluate the efficacy and safety of rTMS in AD.MethodsWe searched PubMed, Embase and Cochrane for randomized controlled trials (RCTs) of rTMS for AD. We calculated pooled estimates of mean difference (MD) with 95% confidence intervals (CI). The protocol was registered at International Prospective Register of Systematic Reviews (PROSPERO) (number CRD42018089990).ResultsFive RCTs involving 148 participants were included in this review. Compared with sham stimulation, high-frequency rTMS led to a significant improvement in cognition as measured by ADAS-cog (MD = -3.65, 95% CI -5.82 to -1.48, p = 0.001), but not MMSE (MD = 0.49, 95% CI -1.45 to 2.42, p = 0.62). High-frequency rTMS also improved the global impression in comparison to the placebo (MD = -0.79, 95% CI -1.24 to -0.34, p = 0.0006). There was no significant difference in mood (MD = -1.36, 95% CI -3.93 to 1.21, p = 0.30) and functional performance (MD = 0.59, 95% CI -1.21 to 2.38, p = 0.52) between high-frequency rTMS and sham groups. Only one trial included low-frequency rTMS reported no significant improvement in cognition, mood and functional performance. Few mild adverse events were observed in both the rTMS and sham groups.ConclusionsRTMS is relatively well tolerated, with some promise for cognitive improvement and global impression in patients with AD. Our findings also indicate the variability between ADAS-cog and MMSE in evaluating global cognitive impairment.
Background and Aims Recent evidence suggest that microbiota is associated with almost all major types of diseases, including cardiovascular diseases. However, its role in Acute Cerebral Infarction remains unexplored. It is important to understand the diversity and distribution of gut microbiota (GM) in patients with Acute Cerebral Infarction and the role that GM plays in this type of disease. Methods We performed pyrosequencing on the gut microbiota of 40 individuals in order to elucidate whether the composition of the microbiota differs between patients with Acute Cerebral Infarction and healthy controls: Of these individuals, there were 31 with Acute Cerebral Infarction and nine controls. We applied linear regression to calculate the correlation between the gut flora and disease risk factors. Finally, KEGG functional enrichment analysis was conducted to examine the correlation between the gut flora and Acute Cerebral Infarction. Results The overall microbial structure was similar in both the controls and the patients, but the control group had higher relative presence of Blautia obeum while the presence of Streptococcus infantis and Prevotella copri were relatively higher in the patient group. Using linear regression, we found that Blautia obeum was negatively associated with white blood cell count and Streptococcus infantis was positively correlated with creatinine and lipoprotein. The KEGG pathway analysis indicated that the bio-pathways including methane metabolism, lipopolysaccharide synthesis, bacterial secretion, and flagellar assembly of the gut microbiota in the patient group was expressed differently than that of the controls. We identified three differentially expressed gut microbial functions in Acute Cerebral Infarction and found four bacterial pathways that might be related to the development of this disease. Conclusions Our study identified three abnormally-expressed bacteria—Blautia obeum, Streptococcus infantis, and Prevotella copri—in patients with Acute Cerebral Infarction compared with healthy controls. It reveals a correlation of these bacterial species with Acute Cerebral Infarction as they relate to disease factors and functional pathways. These findings may shed light on the treatment of cerebral infarction because gut microbiota could serve as a potential therapeutic approach for the treatment of cardiovascular and metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.