Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators encoded by paratactic homologous genes, shuttle-crossing between cytoplasm and nucleus to regulate the gene expression and cell behavior and standing at the center place of the sophisticated regulatory networking of mechanotransduction. Orthodontic tooth movement (OTM) is a process in which extracellular mechanical stimuli are transformed into intracellular biochemical signals to regulate cellular responses and tissue remodeling. Literature studies have confirmed that YAP/TAZ plays an important role not only in embryonic development, homeostasis and tumorigenesis, but also in mechanical-biochemical signal transduction of periodontal tissues under the mediation of various signal molecules in its upstream and downstream. Herein, we review the advances in the roles and mechanisms of YAP/TAZ in OTM to provide insights for better understanding and further study of the OTM and possible targeted clinical intervention in orthodontic treatment.
Under challenging oral environments, the overall performance of resin composites is affected by bio-aging. This study investigated the effects of saliva biofilm-induced bio-aging on the mechanical properties and microbial behavior of composites with different filler types. Microhybrid, nanohybrid, nano-filled and nano-filled flowable composites were bio-aged with saliva biofilm for 30 days. Surface morphology, roughness, mechanical and aesthetic properties were determined. A 48 h saliva biofilm model was used to evaluate the microbial behavior of different composites in vitro. Biofilm metabolic activity, lactic acid production and live/dead bacterial staining were tested. Six volunteers were selected to wear intra-oral appliances with composite slabs for 24 h and biofilms were collected and analyzed using 16S rRNA sequencing to assess the biofilm formation over those materials in situ. Although there were increasing trends, surface roughness, water resorption and material solubility had no significant changes for all groups after bio-aging (p > 0.05). There were no significant changes in elastic modulus for all groups after aging (p > 0.05). However, a decrease in flexural strength in all groups was observed (p < 0.05), except for the nanoflow composite group (p > 0.05). The Vickers hardness remained stable in all groups after aging (p > 0.05), except for the nano-filled group (p < 0.05). The nanoflow composite showed distinct color changes compared to the micro-hybrid group after aging (p < 0.05). Biofilm metabolic activity and lactic acid production in vitro increased slightly after bio-aging in all groups, but with no statistical significance (p > 0.05). The Shannon index diversity of biofilms in situ decreased after aging (p < 0.05), while no significant difference was shown in species composition at the genus level in all groups (p > 0.05). Resin composites with different sized fillers displayed a relatively stable mechanical performance and uncompromised microbial behavior both in vitro and in situ after 30 days of bio-aging. Based on the results, composites with different filler types can be selected flexibly according to clinical needs. However, a longer time for bio-aging is still needed to confirm the mechanical properties and microbial behaviors of composites in the long run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.