Severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-like coronavirus are a potential threat to global health. However, reviews of the long-term effects of clinical treatments in SARS patients are lacking. Here a total of 25 recovered SARS patients were recruited 12 years after infection. Clinical questionnaire responses and examination findings indicated that the patients had experienced various diseases, including lung susceptibility to infections, tumors, cardiovascular disorders, and abnormal glucose metabolism. As compared to healthy controls, metabolomic analyses identified significant differences in the serum metabolomes of SARS survivors. The most significant metabolic disruptions were the comprehensive increase of phosphatidylinositol and lysophospha tidylinositol levels in recovered SARS patients, which coincided with the effect of methylprednisolone administration investigated further in the steroid treated non-SARS patients with severe pneumonia. These results suggested that high-dose pulses of methylprednisolone might cause long-term systemic damage associated with serum metabolic alterations. The present study provided information for an improved understanding of coronavirus-associated pathologies, which might permit further optimization of clinical treatments.
ABSTRACT:Cultured human hepatocytes are a valuable in vitro system for evaluating new molecular entities as inducers of cytochrome P450 (P450) enzymes. The present study summarizes data obtained from 62 preparations of cultured human hepatocytes that were treated with vehicles (saline or dimethylsulfoxide, 0.1%), -naphthoflavone (33 M), phenobarbital (100 or 250 M), isoniazid (100 M) and/or rifampin (20 or 50 M), and examined for the expression of P450 enzymes based on microsomal activity toward marker substrates, or in the case of CYP2C8, the level of immunoreactive protein. The results show that CYP1A2 activity was markedly induced by -naphthoflavone (on average 13-fold, n ؍ 28 preparations), and weakly induced by phenobarbital (1.9-fold, n ؍ 25) and rifampin (2.3-fold, n ؍ 22); CYP2A6 activity tended to be increased with phenobarbital (n ؍ 7) and rifampin (n ؍ 3) treatments, but the effects were not statistically significant; CYP2B6 was induced by phenobarbital (6.5-fold, n ؍ 13) and rifampin (13-fold, n ؍ 14); CYP2C8 was induced by phenobarbital (4.0-fold, n ؍ 4) and rifampin (5.2-fold, n ؍ 4); CYP2C9 was induced by phenobarbital (1.8-fold, n ؍ 14) and rifampin (3.5-fold, n ؍ 10); CYP2C19 was markedly induced by rifampin (37-fold, n ؍ 10), but relatively modestly by phenobarbital (7-fold, n ؍ 9); CYP2D6 was not significantly induced by phenobarbital (n ؍ 5) or rifampin (n ؍ 5); CYP2E1 was induced by phenobarbital (1.7-fold, n ؍ 5), rifampin (2.2-fold, n ؍ 5), and isoniazid (2.3-fold, n ؍ 5); and, CYP3A4 was induced by phenobarbital (3.3-fold, n ؍ 42) and rifampin (10-fold, n ؍ 61), but not by -naphthoflavone. Based on these observations, we generalize that -naphthoflavone induces CYP1A2 and isoniazid induces CYP2E1, whereas rifampin and, to a lesser extent phenobarbital, tend to significantly and consistently induce enzymes of the CYP2A, CYP2B, CYP2C, CYP2E, and CYP3A subfamilies but not the 2D subfamily. Drugs and NMEs5 are often screened for their ability to induce P450 and other drug-metabolizing enzymes with the aim of predicting or explaining drug-drug interactions and pharmacokinetic tolerance.
Recent popularity of consumer-grade virtual reality devices, such as the Oculus Rift and the HTC Vive, has enabled household users to experience highly immersive virtual environments. We take advantage of the commercial availability of these devices to provide an immersive and novel virtual reality training approach, designed to teach individuals how to survive earthquakes, in common indoor environments. Our approach makes use of virtual environments realistically populated with furniture objects for training. During a training, a virtual earthquake is simulated. The user navigates in, and manipulates with, the virtual environments to avoid getting hurt, while learning the observation and self-protection skills to survive an earthquake. We demonstrated our approach for common scene types such as offices, living rooms and dining rooms. To test the effectiveness of our approach, we conducted an evaluation by asking users to train in several rooms of a given scene type and then test in a new room of the same type. Evaluation results show that our virtual reality training approach is effective, with the participants who are trained by our approach performing better, on average, than those trained by alternative approaches in terms of the capabilities to avoid physical damage and to detect potentially dangerous objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.