Recent popularity of consumer-grade virtual reality devices, such as the Oculus Rift and the HTC Vive, has enabled household users to experience highly immersive virtual environments. We take advantage of the commercial availability of these devices to provide an immersive and novel virtual reality training approach, designed to teach individuals how to survive earthquakes, in common indoor environments. Our approach makes use of virtual environments realistically populated with furniture objects for training. During a training, a virtual earthquake is simulated. The user navigates in, and manipulates with, the virtual environments to avoid getting hurt, while learning the observation and self-protection skills to survive an earthquake. We demonstrated our approach for common scene types such as offices, living rooms and dining rooms. To test the effectiveness of our approach, we conducted an evaluation by asking users to train in several rooms of a given scene type and then test in a new room of the same type. Evaluation results show that our virtual reality training approach is effective, with the participants who are trained by our approach performing better, on average, than those trained by alternative approaches in terms of the capabilities to avoid physical damage and to detect potentially dangerous objects.
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting -vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at https://github.com/MarSaKi/ETPNav.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.