The risks and uncertainties inherent in most enterprise resources planning (ERP) investment projects are vast. Decision making in multistage ERP projects investment is also complex, due mainly to the uncertainties involved and the various managerial and/or physical constraints to be enforced. This paper tackles the problem using a real-option analysis framework, and applies multistage stochastic integer programming in formulating an analytical model whose solution will yield optimum or near-optimum investment decisions for ERP projects. Traditionally, such decision problems were tackled using lattice simulation or finite difference methods to compute the value of simple real options. However, these approaches are incapable of dealing with the more complex compound real options, and their use is thus limited to simple real-option analysis. Multistage stochastic integer programming is particularly suitable for sequential decision making under uncertainty, and is used in this paper and to find near-optimal strategies for complex decision problems. Compared with the traditional approaches, multistage stochastic integer programming is a much more powerful tool in evaluating such compound real options. This paper describes the proposed real-option analysis model and uses an example case study to demonstrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.