Besides the critical functions in hemostasis, thrombosis and the wounding process, platelets have been increasingly identified as active players in various processes in tumorigenesis, including angiogenesis and metastasis. Once activated, platelets can release bioactive contents such as lipids, microRNAs, and growth factors into the bloodstream, subsequently enhancing the platelet–cancer interaction and stimulating cancer metastasis and angiogenesis. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated to be associated with platelets. Therefore, understanding how platelets contribute to the tumor microenvironment may potentially identify strategies to suppress cancer angiogenesis, metastasis, and drug resistance. Herein, we present a review of recent investigations on the role of platelets in the tumor-microenvironment including angiogenesis, and metastasis, as well as targeting platelets for cancer treatment, especially in drug resistance.
Alzheimer's disease (AD) is a common chronic neurodegenerative disease with well-defined pathophysiological mechanisms. Ilex kudingcha (IK) C.J. Tseng is commonly known as bitter tea or “Khom” tea in Vietnam. The present study was conducted to investigate the anti-dementia effect of IK using olfactory bulbectomized (OBX) mice. OBX mice were daily treated with IK extract (540 mg/kg) or reference drug, tacrine (2.5 mg/kg) 1 week before and continuously for 3 days after the OBX surgery. The object recognition test, modified Y maze test and fear conditioning test were employed to analyze non-spatial short-term, spatial short-term and long-term memories of the mice respectively. Administration of IK extract and tacrine attenuated these OBX-induced cognitive deficits in mice. The effects of IK and tacrine on spatial short-term memory impairment were reversed by scopolamine, a muscarinic receptor antagonist. The amyloid-beta (Aβ) production in adult transgenic Drosophila brain flies was also investigated by using Western blotting with APP-HA antibody. These results indicated that IK extract improves short-term and long-term memory disturbances in OBX mice and that muscarinic receptor may play a role on these actions. In addition, our result also showed that IK extract reduces the expression of amyloid precursor protein (APP) in brain of AD model using Drosophila melanogaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.