Background Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC), plasmid-mediated AmpCproducing E coli (pAmpC-EC), and other bacteria are resistant to important β-lactam antibiotics. ESBL-EC and pAmpC-EC are increasingly reported in animals, food, the environment, and community-acquired and health-careassociated human infections. These infections are usually preceded by asymptomatic carriage, for which attributions to animal, food, environmental, and human sources remain unquantified. Methods In this population-based modelling study, we collected ESBL and pAmpC gene data on the Netherlands population for 2005-17 from published datasets of gene occurrences in E coli isolates from different sources, and from partners of the ESBL Attribution Consortium and the Dutch National Antimicrobial Surveillance System. Using these data, we applied an established source attribution model based on ESBL-EC and pAmpC-EC prevalence and gene data for humans, including high-risk populations (ie, returning travellers, clinical patients, farmers), farm and companion animals, food, surface freshwater, and wild birds, and human exposure data, to quantify the overall and gene-specific attributable sources of community-acquired ESBL-EC and pAmpC-EC intestinal carriage. We also used a simple transmission model to determine the basic reproduction number (R 0) in the open community. Findings We identified 1220 occurrences of ESBL-EC and pAmpC-EC genes in humans, of which 478 were in clinical patients, 454 were from asymptomatic carriers in the open community, 103 were in poultry and pig farmers, and 185 were in people who had travelled out of the region. We also identified 6275 occurrences in non-human sources, including 479 in companion animals, 4026 in farm animals, 66 in wild birds, 1430 from food products, and 274 from surface freshwater. Most community-acquired ESBL-EC and pAmpC-EC carriage was attributed to human-to-human transmission within or between households in the open community (60•1%, 95% credible interval 40•0-73•5), and to secondary transmission from high-risk groups (6•9%, 4•1-9•2). Food accounted for 18•9% (7•0-38•3) of carriage, companion animals for 7•9% (1•4-19•9), farm animals (non-occupational contact) for 3•6% (0•6-9•9), and swimming in freshwater and wild birds (ie, environmental contact) for 2•6% (0•2-8•7). We derived an R 0 of 0•63 (95% CI 0•42-0•77) for intracommunity transmission. Interpretation Although humans are the main source of community-acquired ESBL-EC and pAmpC-EC carriage, the attributable non-human sources underpin the need for longitudinal studies and continuous monitoring, because intracommunity ESBL-EC and pAmpC-EC spread alone is unlikely to be self-maintaining without transmission to and from non-human sources.
Several case-control studies have investigated risk factors for human salmonellosis while others have used Salmonella subtyping to attribute human infections to different food and animal reservoirs. This study combined case-control and source attribution data into a single analysis to explore risk factors at the point of exposure for human salmonellosis originating from four putative food-producing animal reservoirs (pigs, cattle, broilers and layers/eggs) in the Netherlands. We confirmed that most human cases (∼90%) were attributable to layers/eggs and pigs. Layers/eggs and broilers were the most likely reservoirs of salmonellosis in adults, in urban areas, and in spring/summer, whereas pigs and cattle were the most likely reservoirs of salmonellosis in children, in rural areas, and in autumn/winter. Several reservoir-specific risk factors were identified. Not using a chopping board for raw meat only and consuming raw/undercooked meat were risk factors for infection with salmonellas originating from pigs, cattle and broilers. Consuming raw/undercooked eggs and by-products were risk factors for layer/egg-associated salmonellosis. Using antibiotics was a risk factor for pig- and cattle-associated salmonellosis and using proton-pump inhibitors for salmonellosis attributable to any reservoir. Pig- and cattle-associated infections were also linked to direct contact with animals and environmental exposure (e.g. playing in sandboxes). Eating fish, meat in pastry, and several non-meat foods (fruit, vegetables and pasteurized dairy products) were protective factors. Consuming pork and occupational exposure to animals and/or raw meats were protective against layer/egg-associated salmonellosis. We concluded that individuals acquiring salmonellosis from different reservoirs have different associated risk factors, suggesting that salmonellas may infect humans through various transmission pathways depending on their original reservoirs. The outcome of classical case-control studies can be enhanced by incorporating source attribution data and vice versa.
BackgroundColon cancer constitutes one of the most frequent malignancies. Previous studies showed that Salmonella manipulates host cell signaling pathways and that Salmonella Typhimurium infection facilitates colon cancer development in genetically predisposed mice. This epidemiological study examined whether severe Salmonella infection, usually acquired from contaminated food, is associated with increased colon cancer risk in humans.Methods and findingsWe performed a nationwide registry-based study to assess colon cancer risk after diagnosed Salmonella infection. National infectious disease surveillance records (1999–2015) for Dutch residents aged ≥20 years when diagnosed with salmonellosis (n = 14,264) were linked to the Netherlands Cancer Registry. Salmonella-infected patients were laboratory-confirmed under medical consultation after 1–2 weeks of illness. These datasets also contained information on Salmonella serovar and type of infection. Colon cancer risk (overall and per colon subsite) among patients with a diagnosed Salmonella infection was compared with expected colon cancer risk in the general population. Data from the nationwide registry of histo- and cytopathology (PALGA) and Statistics Netherlands (CBS) allowed assessing potential effects of age, gender, latency, socioeconomic status, genetic predisposition, inflammatory bowel disease (IBD), and tumor features. We found that compared to the general population, colon cancer risk was significantly increased (standardized incidence ratio [SIR] 1.54; 95%CI 1.09–2.10) among patients with Salmonella infection diagnosed <60 years of age. Such increased risk concerned specifically the ascending/transverse colon (SIR 2.12; 95%CI 1.38–3.09) after S. Enteritidis infection (SIR 2.97; 95%CI 1.73–4.76). Salmonellosis occurred more frequently among colon cancer patients with pre-infectious IBD, a known risk factor for colon cancer. Colon tumors of patients with a history of Salmonella infection were mostly of low grade.ConclusionsPatients diagnosed with severe salmonellosis have an increased risk of developing cancer in the ascending/transverse parts of the colon. This risk concerns particularly S. Enteritidis infection, suggesting a contribution of this major foodborne pathogen to colon cancer development.
Campylobacteriosis has increased markedly in Luxembourg during recent years. We sought to determine which Campylobacter genotypes infect humans, where they may originate from, and how they may infect humans. Multilocus sequence typing was performed on 1153 Campylobacter jejuni and 136 C. coli human strains to be attributed to three putative animal reservoirs (poultry, ruminants, pigs) and to environmental water using the asymmetric island model. A nationwide case-control study (2010–2013) for domestic campylobacteriosis was also conducted, including 367 C. jejuni and 48 C. coli cases, and 624 controls. Risk factors were investigated by Campylobacter species, and for strains attributed to different sources using a combined case-control and source attribution analysis. 282 sequence types (STs) were identified: ST-21, ST-48, ST-572, ST-50 and ST-257 were prevailing. Most cases were attributed to poultry (61.2%) and ruminants (33.3%). Consuming chicken outside the home was the dominant risk factor for both Campylobacter species. Newly identified risk factors included contact with garden soil for either species, and consuming beef specifically for C. coli. Poultry-associated campylobacteriosis was linked to poultry consumption in wintertime, and ruminant-associated campylobacteriosis to tap-water provider type. Besides confirming chicken as campylobacteriosis primary source, additional evidence was found for other reservoirs and transmission routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.